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Abstract

Lipid composition may have the potential to predict disease progression in non-

alcoholic fatty liver disease (NAFLD). Magnetic resonance spectroscopy (MRS) stud-

ies can provide this lipid composition information but single voxel techniques have

limited spatial coverage. Spectroscopic imaging techniques provide improved spatial

coverage, but are inherently slow. This thesis uses spin echo single point imaging

(SE-SPI), accelerated with compressed sensing (CS), for lipid composition mapping.

Oil phantom studies using preclinical and clinical systems showed similar trends in

lipid composition when comparing CS SE-SPI to conventional MRS, although clin-

ical SE-SPI scans showed increased variability in lipid composition measurements.

In a mouse model of NAFLD, CS SE-SPI showed changes in lipid composition in

agreement with literature results. This work demonstrates the viability of CS SE-

SPI in measuring lipid composition. Future implementation of CS SE-SPI in clinical

cases will permit a more thorough investigation of lipid composition as a biomarker

of NAFLD progression.
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Chapter 1

Introduction

1.1 Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD), characterized by elevated levels of fat in

the liver,1 known as steatosis, is a common health concern. While the prevalences

of NAFLD and its further complications are not well defined due to variation in

populations and diagnostic techniques, in developed countries it is estimated that

20-40% of the population have NAFLD, and it is expected that these numbers will

rise with increasing rates of diabetes and obesity. Many patients with NAFLD are

relatively unaffected by the disease. However, in 10% to 20% of cases NAFLD will

progress to non-alcoholic steatohepatitis (NASH), characterized by inflammation and

ballooning, or expansion, of the liver cells, the latter of which is associated with the

accumulation of fat droplets in the cytoplasm, among other things [2]. A further

subset of NASH patients will develop complications such as fibrosis and cirrhosis,

leading to liver failure, and liver cancer [3, 4, 5, 6].

Notably, steatosis and inflammation are more easily reversed than fibrosis and fur-

ther complications, typically treated with lifestyle changes or medication [1, 7]. Thus,

early detection of disease is especially valuable, and knowing the extent of disease pro-

gression is important for clinical management [8]. However, the rate of progression

varies among patients, and symptoms of liver damage often don’t appear until later

stages of the disease [9, 10]. Furthermore, the current gold standard for grading and

staging of NASH and fibrosis is biopsy, which, being an invasive procedure, cannot be

used for frequent follow up of at risk patients [1, 3, 4, 7]. A non-invasive diagnostic

is preferred. Biopsy also suffers from limited spatial coverage, an important consid-

eration as the accumulation of fat in the liver is not necessarily homogeneous. Liver

tissue located near the central vein is more susceptible to steatosis than that located

1Often defined as > 5% fat by weight, or accumulation of fat in >5% of liver cells [1], excluding
those cases caused by excessive alcohol consumption.

1
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at the periphery, particularly in early stages of disease progression. In later stages the

distribution of fat in the liver is most often diffuse; however, heterogeneous cases do

exist [11]. Additionally, heterogeneity in the inflammation and hepatocyte balloon-

ing used for histological diagnosis of NASH is not uncommon. Grading and staging

of NASH as determined from paired biopsy samples has been shown to disagree in

approximately 40% of patients, a disagreement that cannot be entirely attributed to

intraobserver variability [12].

1.2 Non-Invasive Diagnostics in NAFLD

Laboratory results, such as elevated levels of aspartate aminotransferase and/or ala-

nine aminotransferase, may be used as indicators of NAFLD, but have poor specificity

[1, 10]. Another option for non-invasive monitoring of disease progression is medical

imaging. Steatosis, the initial accumulation of fat in the liver, is reliably detectable

using magnetic resonance (MR) techniques such as MR spectroscopy (MRS) or MR

fat fraction mapping, as well as ultrasound and, in some cases, CT. However, in most

cases this steatosis is benign. Furthermore, earlier indicators of disease, including

steatosis, inflammation, and ballooning, regress as fibrosis develops. Without some

measure of fibrosis stage, fat fraction alone cannot be used to distinguish between

early and later stages of disease [3, 9, 10]. Later stages of disease progression, such

as advanced cirrhosis, may be diagnosed through combination of laboratory tests and

imaging [13, 14]; however, at this point liver damage is much more difficult to treat.

The need for indicators of early NAFLD progression has led to an abundance of

research using MR imaging (MRI), including perfusion and diffusion MRI [14, 15, 16,

17], to attempt a non-invasive grading and staging of NASH and fibrosis, with varying

degrees of success. One technique shown to be relatively successful in this context is

magnetic resonance elastography (MRE). MRE provides a non-invasive measurement

of liver elasticity, or stiffness, which has been shown to increase with fibrosis stage,

and has had some success distinguishing steatosis from NASH without fibrosis [8].

However, this measure of liver stiffness is not specific to NAFLD progression; other

causes include acute inflammation and portal hypertension, as liver stiffness has also

been associated with high blood pressure in the portal venous system [14, 18]. MRE

scans may also be complicated by iron overload [19], which can occur in NAFLD [20],
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although there are approaches attempting to overcome this issue [21]. Additionally,

MRE requires specialized equipment that is not yet widely available [1]. Less accurate

ultrasound elastography techniques can also be used to monitor fibrosis, but are

limited by the depth of the tissue of interest, complicating liver stiffness measurements

in obese patients [14].

1.2.1 Fat Composition in NAFLD

Perhaps more indicative of risk than fat fraction is the composition of the liver fat

accumulated in NAFLD [22, 23, 24]. All fatty acids are composed of a carboxyl group

and a hydrocarbon chain. For some of these fatty acids, the hydrocarbon chain con-

sists solely of single bonds, denoted saturated fatty acids, or SFAs. Those fatty acids

for which the hydrocarbon chain contains double bonds are referred to as unsaturated

fatty acids, or UFAs. Furthermore, UFAs for which the hydrocarbon chain contains

multiple double bonds are referred to as polyunsaturated fatty acids, or PUFAs, while

those containing only one double bond are referred to as monounsaturated fatty acids,

or MUFAs.

This fatty acid composition information, namely the relative amounts of SFAs,

MUFAs, and PUFAs, in liver fat in NAFLD may have the potential to predict which

patients are more at risk of developing NASH, before changes in liver stiffness, as

can be observed by elastography, occur. It is hypothesized that a decrease in the

relative concentration of PUFAs in the liver contributes to the development of NASH.

More specifically, a decrease in omega-3 long chain PUFAs2 appears to downregulate

genes associated with the breakdown of fatty acids and upregulate genes associated

with their synthesis, contributing to hepatic steatosis, with the secondary effect of

inducing inflammation, together contributing to hepatic steatohepatitis [25, 26]. As

such, much research has been done investigating these omega-3 PUFAs both as a

treatment [27], and a biomarker of NAFLD. A study by Elizondo et al. using gas-

liquid chromatography has shown liver fat in obese patients with NAFLD to have

a higher concentration of SFAs and relatively fewer PUFAs, with no difference in

MUFAs, as compared to a control group. This decrease in PUFAs corresponded to

2Omega-3 PUFAs are characterized by a double bond between the 3rd and 4th carbon atoms from
the terminal methyl group in their hydrocarbon chain.
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a decrease in omega-3 long chain PUFAs [22], as has also been observed in NASH

patients when compared to a control group [25].

This fatty acid composition information can also be measured non-invasively, to

an extent, using MRS techniques such as point resolved spectroscopy (PRESS). Hy-

drogen nuclei bonded to the carbon atoms forming double bonds present in UFAs

will produce signal with slightly different frequency than those present in SFAs. The

same may be said for hydrogen nuclei bonded to carbon atoms situated between two

of these double bonds, as will occur in PUFAs. As such, the relative amplitudes

of different frequency components of the signal can be used to measure the relative

amounts of UFAs and PUFAs present, as quantified using unsaturation (UI) and

polyunsaturation (PUI) indices, respectively (see Section 2.3 for more details). One

study by Johnson et al. using these metrics, as well as a surrogate unsaturation in-

dex (UIs) in order to facilitate analysis in the presence of a water signal, has shown

a similar increase in the relative amount of SFAs and decrease in that of PUFAs in

obese patients with fatty livers as compared to controls. However, these metrics can-

not distinguish contributions of omega-3 long chain PUFAs, as was the case for the

above-mentioned gas-liquid chromatography studies. The trends in relative contribu-

tion of SFAs and PUFAs appeared consistent when comparing obese NAFLD patients

to obese controls with normal liver fat content, but only the change in PUFAs was

significant. Notably, differences in diet leading up to the MRS studies did not lead

to significant differences in fatty acid composition measurements [23].

Changes in fatty acid composition can also observed in animal models of NAFLD,

often induced through a methionine and choline deficient (MCD) diet [28, 29, 30, 31].

This methionine choline deficiency leads to a sequestration of fat in the liver, as well

as progressive liver injury that may accompany human NAFLD. Mice fed an MCD

diet will develop NASH after 10 days, and fibrosis after about 10 weeks. However, the

metabolic changes that occur with MCD diets are not representative of those which

occur in human NAFLD; notably, mice on MCD diets undergo considerable weight

loss [32]. While animal models of NAFLD are ideally designed to model the histo-

logical results of human NAFLD, including steatosis, inflammation, ballooning, etc.,

along with the accompanying metabolic changes, no such ideal model exists. Funda-

mental anatomical and physiological differences between humans and animals used to
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model human disease will always be a limitation, and the complexity of NAFLD, along

with our incomplete understanding of the disease, further complicates the design of

such a model [33]. Nonetheless, these models are still very useful in studying disease,

as long as the limitations are considered in the context of the research question at

hand.

1.3 Lipid Composition Mapping in Fatty Liver Disease

As discussed above, lipid composition information has potential as a biomarker in

NAFLD. MRS techniques can provide this lipid composition information non-invasively;

however, like biopsy, these techniques provide poor spatial coverage, whereas accu-

mulation of fat in the liver may be heterogeneous. On the other hand, magnetic

resonance spectroscopic imaging (MRSI) techniques can provide this fatty acid com-

position information with improved spatial coverage, but are limited in terms of their

clinical application by lengthy acquisition times. Spectroscopic imaging sequences

based on turbo spectroscopic imaging (TSI) and echo-planar spectroscopic imaging

(EPSI) techniques can be used to accelerate scans in some cases. However, the appli-

cation of TSI is limited by quick signal decay inherent to the fatty acids of interest

to this work [34], and EPSI is especially sensitive to magnetic field inhomogeneities,

which may be exaggerated by the iron overload that can accompany NAFLD [35, 36].

As such, this work makes use of a simple single point imaging technique using spin

echoes to reverse signal decay that may result from these high iron concentrations,

denoted spin echo single point imaging, or SE-SPI. While single point imaging tech-

niques are inherently slow, scans can be accelerated using compressed sensing (CS).

CS reduces scan times by undersampling the data. While this undersampling

produces noise-like artefacts in the resulting images, this noise can be removed during

the reconstruction process using a sparse representation3 of the data. Essentially,

in this sparse representation the true signal can be more easily separated from the

noise-like artefacts. As spectroscopic imaging techniques are often limited in terms of

acquisition time, CS has been previously applied to a number of MRSI applications,

including 13C [37] and 19F imaging [38]. Application of CS to 1H metabolic imaging

at 3T in the brain and prostate has shown that scan times can be reduced by as much

3A sparse representation will describe the signal with only a few non-zero values.
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as 80% with no significant change in clinically relevant biomarkers [39].

1.4 Research Question and Hypotheses

Given the potential for lipid composition information as a biomarker of NAFLD, and

that of SE-SPI in providing a more complete measure of this information compared to

single voxel spectroscopy (SVS) techniques, this work addresses the following research

question: Can SE-SPI, specifically that accelerated with compressed sensing, provide

an accurate measure of lipid composition? This question is addressed by both oil

phantom experiments and a mouse model of NAFLD, hypothesizing:

Hypothesis A: In oil phantoms Fat composition as measured using SE-SPI,

fully sampled and accelerated, will show differences (significance

determined using Welch’s t-test, p < 0.05 considered significant)

in UI, UIs, and PUI for different oils in agreement with those

found using PRESS.

Hypothesis B: In mice CS SE-SPI will allow in vivo measurement of lipid com-

position in a mouse model of NAFLD consistent with literature

results, showing an increase in the relative concentration of SFAs

in mice fed an MCD diet compared to controls [29].

The MCD diet used in this study has been shown to result in a higher concen-

tration of SFAs with no significant change in the relative amount of MUFAs [29],

implying a decrease in the relative amount of PUFAs. These trends do follow those

observed in the human studies discussed in Section 1.2.1, although it should be noted

that the degree of change in fatty acid composition will not necessarily follow that

occurring in human NAFLD. In fact, changes in fatty acid composition are not always

consistent between animal studies, likely in part due to differences in diet formulation

which have been shown to affect fatty acid composition measurements [30].

While the degree of change in fatty acid composition, both in the phantoms and

the in vivo model of NAFLD used for this work, may not accurately model those

observed in human cases of NAFLD, such studies are still useful in assessing the

potential of CS SE-SPI to monitor changes in fatty acid composition in comparison
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to accepted techniques. For phantom studies, PRESS was chosen as the gold standard

as opposed to theoretical or literature values since calculations in the latter case would

require corrections for signal decay, dependant on the acquisition parameters and MR

properties of the fatty acids. For the in vivo model of NAFLD, the poor quality of

PRESS data prompted comparison with literature results.

Additional background information on the relevant MR theory and analysis tech-

niques is given in Chapter 2. The acquisition and post processing pipeline, including

choice of post processing parameters, is discussed in Chapter 3. The phantom and

in vivo experiments addressing Hypotheses A and B are given in Sections 4 and 5,

respectively. Conclusions and future directions are summarized in Chapter 6.



Chapter 2

Background

2.1 Nuclear Magnetic Resonance

Atomic nuclei possess an intrinsic quantum property known as spin, somewhat analo-

gous to the classical concept of angular momentum. When nuclei with non-zero spin

are exposed to a uniform magnetic field, B0, different spin states become separated

by an energy gap as described by the Zeeman effect. At finite temperatures, spin-1/2

nuclei such as 1H have two such states, orienting themselves such that their spins are

either parallel or antiparallel to this magnetic field1, as shown in Figure 2.1.

Figure 2.1: Energy level diagram for a spin-1/2 particle in a uniform magnetic field.

The energy separation between these two orientations is given by:

∆E = γh̄B0 (2.1)

where γ is the gyromagnetic ratio, given for some particular nuclei in Table 2.1, and

h̄ the Planck constant. Thus, transitions between these two spin states will occur

through absorption or emission of energy ∆E = h̄ν, where:

νL = γB0 (2.2)

This frequency, νL, is known as the Larmor frequency [40]. For medical imaging

applications, these frequencies are typically in the radiofrequency (RF) range.

1This statement is not completely correct. In a true quantum mechanical description, the spin
state of an atomic nucleus may very well be described as a superposition of the two energy states.
However, any direct measurement will indicate either parallel or antiparallel orientation.

8
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Table 2.1: Gyromagnetic ratios, γ (MHz/T), for 1H, 13C, 19F, 23Na, and 31P.

Nucleus γ (MHz/T)
1H 42.58
13C 10.71
19F 40.05
23Na 11.26
31P 17.24

For a system at absolute zero, all nuclei would orient themselves in the lower

energy state. However, due to the thermal energy present, there exists only a slight

imbalance favouring this case. This slight excess, the source of signal in nuclear

magnetic resonance (NMR) experiments, is given by the Boltzmann distribution:

Nparallel

Nantiparallel

= exp

[
∆E

kBT

]
(2.3)

where ∆E is the energy separation defined in Equation 2.1, kB the Boltzmann

constant, and T the temperature of the sample. For example, 1H nuclei (γ =

42.58) at body temperature (T = 37oC) in a 3T MRI will be distributed such that

Nparallel/Nantiparallel ≈ 1.000003. Although this excess represents a tiny fraction of

nuclei, given the large number of hydrogen atoms in the human body their signal

production can be described classically.2

A particle with non-zero spin will have an associated magnetic moment, µ, the

net sum of which (for an ensemble of nuclei) is referred to as the bulk magnetization

vector, ~M . When exposed to a homogeneous field, B0, along the longitudinal axis, ~z,

spins will gradually orient themselves with slight preference for the low energy state as

described in Equation 2.3, producing a net ~M along the same direction as B0, denoted

as the equilibrium magnetization, M0. If disturbed from this equilibrium position,

the interaction between net magnetization and the homogeneous field will produce a

torque causing ~M to precess about the longitudinal axis with angular frequency ωL,3

as depicted in Figure 2.2.

2More specifically, for uncoupled spins, the results of this classical treatment are identical to those
of a quantum mechanical description [41]. While spin coupling is known to result in peak splitting in
some MRS experiments, it is not considered for this work as the relatively large linewidths obscure
any effect.

3Angular frequency is given by: ωL = 2πνL
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Figure 2.2: Precession of the net magnetization vector, �M , about the longitudinal
direction. Signal detected is the current induced by the perpendicular component,
M⊥. As �M realigns itself with the applied magnetic field, �B0, the magnitude of M⊥
will decrease.

In MRI, �M is disturbed from equilibrium through application of an RF pulse,

oriented such that it generates a magnetic field perpendicular to B0, denoted B1,

oscillating at the Larmor frequency, νL. Just as the interaction between �M and B0

causes �M to precess about the longitudinal direction, the interaction between �M and

B1 during the RF pulse will rotate �M away from the longitudinal axis. The degree

of rotation is proportional to B1, as well as the duration of the RF pulse, and is

described by the flip angle, α. For example, an RF pulse with α = 90◦ would displace

�M from the longitudinal axis to the transverse xy-plane.

Once displaced from the longitudinal axis, �M will have some non-zero transverse

component, denoted M⊥, as shown in Figure 2.2. As �M precesses about �z, its x and

y components, M⊥,x and M⊥,y, respectively, will oscillate at the Larmor frequency.

If a coil of wire is oriented such that its axis aligns with the x-axis in Figure 2.2,

the oscillation of M⊥,x will induce an oscillating current in the wire with the same

frequency. The same may be said for a coil of wire aligned along the y-axis. This
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oscillating current is the source of signal in an NMR experiment. In quadrature detec-

tion, the currents induced by M⊥,x and M⊥,y are detected simultaneously, represented

as a complex signal S(t) = Sx + iSy. In time, the magnitude of these oscillations will

decrease, as shown in Figure 2.3; this process is known as relaxation. The signal

produced is thus referred to as the free induction decay (FID) [41]:

S(t) = S0 exp(iφ) exp(iωLt) exp(−t/T ∗2 ) (2.4)

Figure 2.3: Real and imaginary components of the free induction decay, derived from
components of M⊥ as it rotates about the longitudinal axis.

where S0 is the signal amplitude and φ the initial phase offset. The exponential de-

cay enveloping the oscillation of signal at Larmor frequency, ωL, is characterized by

time constant T ∗2 , known as the observed transverse relaxation time. There are mul-

tiple factors that contribute to this signal decay, namely the recovery of equilibrium

magnetization and dephasing of signal in the transverse xy-plane.

Molecular motion in the sample will cause nuclei to experience magnetic field

fluctuations. If such fluctuations occur at the Larmor frequency, these nuclei can

transition between the spin states shown in Figure 2.1, with slight preference for the

lower energy state. In the classical picture, this loss of energy from the spins to their

environment causes the net magnetization vector, ~M , to return to its equilibrium

value. The recovery of the longitudinal component of magnetization, Mz, is exponen-

tial, characterized by time constant T1. For an initial 90◦ RF pulse, such that Mz is

initially zero:
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Mz = M0[1− exp(−t/T1)] (2.5)

Samples with more molecular motion at the Larmor frequency will have shorter T1

relaxation times. However, this recovery process is not directly observed with NMR

experiments, as measured signal is always generated by the transverse component of

magnetization, M⊥, and there are additional dephasing effects influencing this signal.

Local B0 fluctuations experienced by small groups of spins, known as spin packets,

cause their magnetization vectors to precess in the transverse plane at slightly differ-

ent frequencies. While a 90◦ RF pulse, applied to spins aligned along the longitudinal

axis, will rotate their combined ~M such that those spins are still aligned in the trans-

verse plane, slight differences in precession frequency between spin packets will result

in a dephasing of the individual magnetization vectors over time, diminishing their

combined signal, M⊥. Factors influencing the magnetic field variations experienced

by a these spins are typically broken up into two categories, smaller scale molecular

field variations and larger scale B0 inhomogeneities.

Dephasing resulting from the smaller scale molecular field variations, along with

signal loss due to T1 recovery processes, is characterized by transverse relaxation time,

T2, sometimes referred to as the ‘true’ transverse relaxation time. For an initial 90◦

RF pulse, such that the transverse magnetization, M⊥, is initially the size of the

equilibrium magnetization, M0:

M⊥ = M0 exp(−t/T2) (2.6)

Given that T2 encompasses dephasing due to these molecular field variations in ad-

dition to that resulting from T1 recovery processes, T2 ≤ T1. Furthermore, as high

frequency molecular motions produce magnetic field fluctuations that are more likely

to cancel out over time, T2 relaxation times are shorter in samples with restricted

molecular motion.

The additional dephasing processes resulting from larger scale B0 inhomogeneities

causes the observed signal to decay more quickly than that expected from T2, and is

characterized by time constant T ∗2 :

1

T ∗2
=

1

T2
+

1

T2,inhomogeneity

(2.7)
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Of particular relevance to this work, the ‘true’ T2 governed signal decay described in

Equation 2.6, independent of that due to large scale B0 inhomogeneities, can be ob-

served using a basic spin echo sequence. With smaller scale molecular field variations,

the field experienced by a single spin will be constantly changing due to molecular

motions, whereas larger scale B0 inhomogeneities, while spatially dependant, will be

consistent for individual spins. As such, application of a second 180◦ RF pulse will

cause a refocusing of spins dephased due to large scale B0 inhomogeneities still ex-

periencing the same field. The time delay between the initial RF pulse and the echo

produced is denoted as the echo time, TE, and is twice as long as the time delay

between the initial RF pulse and the later 180◦ pulse, as shown in Figure 2.4.

Figure 2.4: Pulse sequence diagram for a simple spin echo sequence.

2.2 Spatial Encoding

The simple spin echo sequence given in Figure 2.4 would generate a signal origi-

nating from any 1H nuclei located in the magnet. While this is adequate for NMR

experiments analyzing homogenous samples, for in vivo applications we are typically

interested in limiting signal generation to some spatial region and, in the case of MRI,

spatially resolving the signal. This can be done using magnetic field gradients, which

introduce a spatial dependence to the precession frequency of nuclei:
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Figure 2.5: Pulse sequence diagram with axial slice selection for a spin echo sequence.

ν(z) = γ(B0 +Gzz) (2.8)

where Gz describes the change in magnetic field from B0 along the z-dimension (the

same may be said for the x- and y- dimensions).

2.2.1 Slice Selection

MR signal generation can be limited to a single slice using slice selection. RF pulses

will only affect spin packets whose magnetization vectors precess within some range

of frequencies, denoted the transmit bandwidth (BW ). Thus, while a gradient is

applied, the spin packets affected by the RF pulse will be limited to a slice in space:

BW = γGz∆z (2.9)

where ∆z is the slice thickness. A pulse sequence diagram with axial slice selection

for a spin echo sequence is given in Figure 2.5. Turning on a gradient along the

longitudinal axis, �z, during the initial 90◦ RF pulse will limit signal generation to an

axial slice. However, as this gradient introduces differences in precession frequency

for different spin packets within the slice, dephasing of their magnetization vectors

will reduce the signal the transverse plane. As such, a second rephasing gradient is

applied following the RF pulse to reverse this effect. For the second, 180◦ re-focusing

RF pulse, the effects of this dephasing cancel out.
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2.2.2 Phase and Frequency Encoding

Figure 2.6: Phase encoding in 1D. Net magnetization vectors, �M , are displayed in a
rotating xy-frame, such that rotation at the Larmor frequency is stationary.

Following slice selection, signal within a slice can be spatially resolved using phase

and/or frequency encoding. In the former case, magnetic field gradients are applied

(in two directions for a 2D acquisition, or in all three dimensions for a 3D acquisition)

in order to induce a spatial dependence in the phase of the net magnetization vector,

�M . This phase encoding process is shown in 1D in Figure 2.6. Following application

of the initial RF pulse, �M is aligned for each voxel. Turning on a magnetic field

gradient introduces spatial dependence to the precession frequency. After the gradient

is turned off, the phase of �M is spatially dependant. As a result, signal generated

by spin packets in different locations within the slice will undergo constructive or

deconstructive interference. For example, the signal produced by the centre voxel

in Figure 2.6 will deconstructively interfere with that produced by the first and last

voxels. Thus, the measured signal is essentially that of the object, I, multiplied by a

sine function characterized by wavenumber k [42], integrated over space:

S(t) =

∫
I(�x) exp(−i2π�k · �x)dx (2.10)

where k is proportional to the gradient area:



16

Figure 2.7: Pulse sequence diagram for a 2D phase encoded spin echo sequence.

kx =
γ

2π

∫
Gx(t)dt (2.11)

.

Repeating this phase encoding process with different gradient areas, using a pulse

sequence diagram like that given in Figure 2.7, each phase encoding step separated

by repetition time, TR, will sample the image with sinusoids of varying kx and ky.
4

As such, we say that MR data is acquired in k-space. This k-space data is essentially

a Fourier transform [43], and the image, I, weighted by 1H, or proton density, as well

as relaxation parameters (e.g. T1, depending on TR), can be obtained through an

inverse Fourier transform, as depicted in Figure 2.8.

In the case of frequency encoding, the gradients remain turned on during signal

readout, such that a continual evolution of phase as described in Figure 2.6 can be

used to acquire a whole line of k-space for each TR, as opposed to a single k-space

point.

4While, as discussed in Section 2.1, the longitudinal component of magnetization is not measured
directly, incomplete recovery ofMz prior to these repeated excitations will reduce the signal measured
in the transverse plane.
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Figure 2.8: Reconstruction of a 2D image acquired with phase encoding. Acquiring
FIDs while incrementally changing the phase encoding gradients produces will sample
the image with sinusoids of varying wavenumber, kx and ky. This data is stored in
k-space (log-scaled to show detail in the periphery), and the desired image in physical
space obtained through a 2D inverse Fourier transform.

In understanding MRI acquisition, particularly undersampling as will be discussed

in Section 2.4, it is useful to understand how different k-space regions contribute to

the resulting image. Shown in Figure 2.9A is a fully sampled k-space dataset with

its corresponding image. As discussed above, each point in k-space corresponds to

the signal resulting from sampling the image with a 2D sine wave characterized by

wavenumbers kx and ky. As such, points closer to the centre of k-space (small kx

and ky) correspond to low spatial frequency components of the image, while points

in the periphery correspond to high spatial frequency components. Shown in Figure

2.9B is the image produced from an inverse Fourier transform of the central region of

k-space. Central k-space data contains the main contrast information of the image;

however, the resulting image is blurred since fine detail information is described by

the high spatial frequency components in the k-space periphery, as shown in Figure

2.9C.
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Figure 2.9: K-space datasets (log-scaled to show detail in the periphery) along with
their corresponding images. (A) Fully sampled k-space dataset. (B) Central k-space
data. (C) Peripheral k-space data.

2.3 Magnetic Resonance Spectroscopy

So far we have only considered spins precessing at or near the Larmor frequency. How-

ever, in addition to B0 inhomogeneities and molecular field variations, the magnetic

field experienced by these spins is also influenced by the chemical environment of the

molecule. More specifically, differences in the electron clouds for different chemical

environments will shield nuclei from B0 to different degrees. Given the abundance

of water in the human body, the majority of signal in conventional MRI images is

generated by 1H nuclei of water molecules, which all experience the same degree of

shielding and precess, approximately, at the same Larmor frequency. However, in the

presence of fat the FID will be composed of a number of different frequency compo-

nents, corresponding to 1H nuclei present in fatty acids, as shown in Figure 2.10A.

From this representation it is difficult to visualize the presence of these different fre-

quency components. As such, the signal is often portrayed as a spectrum in the

frequency domain, obtained through a Fourier Transform, as shown in Figure 2.10B.

In this representation, T ∗
2 processes leading to signal decay described in Section

2.1 appear in the form of line broadening, with faster T ∗
2 decay resulting in broader

spectral peaks. This effect is often described in the form of a damping factor, d =

1/T ∗
2 , such that larger damping factors correspond to broader spectral peaks, and vice

versa. While decay due to T2 and T1 processes is out of our control, additional decay
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due to B0 inhomogeneities can be lessened by improved shimming of the field [44].

For a phased spectrum, whereby the initial phase offset for each frequency component

of signal has been adjusted to φ = 0, the signal magnitude of each component is given

by the area under the real part of its corresponding peak.

Figure 2.10: (A) FID (real part) produced by a sample containing both fat and
water. (B) Spectrum (real part) resulting from the Fourier transform of this FID,
showing the different frequency components of the signal. The water peak is located
at approximately 4.7 ppm, while various fatty acid functional groups generate signal
precessing at frequencies of about 5.3, 3.0, 2.3, 2.1, 1.3, and 0.9 ppm.

By convention, spectra in MRS are displayed with frequency increasing to the

left, such that rightward peaks originate from spins experiencing a higher degree of

shielding. The relative frequency difference between these peaks is known as chemical

shift, δ, conventionally referred to in units of parts-per-million, or ppm, such that it

is independent of field strength, B0:

δ (ppm) =
∆ν (Hz)

γ (MHz/T)× B0 (T)
(2.12)

For the purpose of this thesis, six fat peaks are considered, as shown in Figure 2.10

and summarized in Table 2.2. Information about the relative proportions of SFAs,

UFAs, and PUFAs, a potential biomarker for NAFLD progression as discussed in

Section 1.2.1, can be derived from the relative amplitudes of these fat peaks (spectral

processing is described further in Section 2.5) as follows.

SFAs will only contribute to Peaks 3, 5, and 6. UFAs contribute signal to all six

of these peaks, but are unique to Peaks 1, 2, and 4. Furthermore, PUFAs are the
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Table 2.2: Summary of fatty acid functional groups described in [23].

Peak Name Functional Frequency
Number Group Range (ppm)

1 Methene –CH=CH– 5.2− 5.4
2 Diallylic =CH-CH2-CH= 2.8− 3.1
3 α-Methylene to carboxyl COO-CH2-CH2– 2.2− 2.4
4 Allylic –CH2-CH=CH– 2.0− 2.1
5 Methylene –CH2– 1.2− 1.4
6 Methyl –CH3 0.8− 1.0

sole contributor to the diallylic peak, Peak 2. Thus, Yeung et al. have proposed

measuring the degree of unsaturation using the following unsaturation index, UI [45]:

UI =
a1

a1 + a4 + a5 + a6
(2.13)

where ai are the relative amplitudes of the six fat peaks, as only Peaks 1, 4, 5, and 6

were considered in this case (the study was performed at 1.5 T) [45]. However, the

close proximity of the methene peak (Peak 1) to the water peak introduces difficulties

in calculating UI. Namely, application of a water suppression pulse may also impact

the amplitude of the methene peak, but without water suppression (the case for this

work) the methene peak can be hard to distinguish from the water resonance. As

such, Johnson et al. proposed the following surrogate unsaturation index, UIs [23]:

UIs =
a2 + a4

a2 + a4 + a5 + a6
(2.14)

Lastly, Johnson et al. also proposed measuring the relative amount of PUFAs using

following polyunsaturation index, PUI, based on the diallylic peak (Peak 2) [23]:

PUI =
a2

a2 + a4 + a5 + a6
(2.15)

These three indices, given in Equations 2.13 to 2.15, are those considered for this

work. While other metrics have been proposed [46, 24, 47, 48], UI, UIs, and PUI

were consistent in our phantom studies, and have shown promise for characterizing

NAFLD in clinical studies [23].
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Point Resolved Spectroscopy

One method for obtaining these spectra is using point resolved spectroscopy, or

PRESS. PRESS makes use of three slice selective RF pulses as shown in Figure

2.11. The first, 90◦ RF pulse selectively produces transverse magnetization in the

xy-plane. The second, refocusing RF pulse only affects spin packets in a slice in the

xz-plane, and the third only affects those in a slice in the yz-plane. As discussed

earlier in this section, it should be noted that in MRS we are interested in signals

from a range of 1H nuclei with various chemical shifts. As a result, the slice of nuclei

affected by each pulse will be slightly shifted relative to isocenter for each spectral

peak. Nonetheless, limiting the excitation and two refocusing RF pulses in Figure

2.11 to three perpendicular, albeit potentially shifted, slices (in the xy, xz, and yz

planes) will limit this refocusing effect to spin packets at the approximate intersection

of those three slices, and magnetization outside the region of interest will continue to

dephase due to T ∗2 processes.

If magnetization outside this volume of interest has not completely dephased prior

to readout, it will also contribute to the measured signal. Additionally, an imperfect

180◦ RF pulse may also generate transverse magnetization that can contribute to

the FID following that pulse and future echoes. This unwanted signal is suppressed

using crusher gradients appearing before and after each refocusing pulse. The second

gradient completely dephases, or spoils the signal; however, it also affects the desired

signal. Thus, a gradient of equal polarity and gradient area is applied prior to the

refocusing pulse, pre-emptively nullifying the effect of the second gradient for spins

located within the region of interest [49]. Choosing orthogonal crusher pairs for the

two refocusing pulses prevents any unwanted rephasing effects [50, 44].

While PRESS and other spatially selective MRS methods allow for probing of

specific volumes of interest, they are limited in terms of spatial coverage. Due to

their slice selective nature, the edges of this volume cannot be curved, limiting voxel

placement in non-rectangular regions of interest such as the liver. Furthermore, as the

volume of tissue excited increases, B0 within that volume will be less homogeneous,

resulting in line broadening. However, based on the inhomogeneous nature of NAFLD,

as discussed in Section 1.1, liver coverage is important for this work. This motivates

the application of a spectroscopic imaging approach.
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Figure 2.11: Pulse sequence diagram for a point resolved spectroscopy (PRESS) se-
quence [44].

2.3.1 Magnetic Resonance Spectroscopic Imaging

MR spectroscopic imaging, or MRSI, techniques acquire multivoxel MRS data, allow-

ing for spatial mapping of each resonance. Compared to SVS techniques like PRESS,

MRSI provides improved spatial coverage and spatial resolution, meaning partial vol-

ume effects can be more easily avoided. Although, given that this signal originates

from a smaller region, the reduction in signal to noise ratio, or SNR, can adversely

affect spectral quality. Additionally, the nature of the acquisition is prone to inter-

voxel contamination, as described by the point spread function (PSF) [34]. The PSF

of an imaging system describes its response to a point source, or Dirac delta function,

δ(x):

δ(x) =



0 if x �= 0

undefined otherwise

where
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∫ ∞
−∞

δ(x) = 1 (2.16)

Thus, the PSF of an ideal imaging system would also be a Dirac delta function,

indicating no contribution from this point source to signal in other locations in the

image. However, in MRI the truncation of data acquired in k-space produces rippling,

or ringing, in the PSF. As such, image voxels may contain signal contributions from

outside that voxel. The degree of this intervoxel contamination can be reduced by

increasing the number of voxels acquired, but this requires a longer acquisition time.

MRSIs are often spatially localized using phase encoding, as depicted in Figure 2.7

for a spin echo based sequence. As such, they require more time to be acquired than

anatomical MRIs making use of frequency encoding,5 and are typically acquired with

a lower resolution, amplifying this ringing effect.

Motivation for SE-SPI

Given the inherent scan time requirement for purely phase encoded imaging methods,

there have been many approaches used in order to accelerate MRSI acquisitions for

clinical use. As with conventional MRI applications, scans are typically accelerated

in one of two ways - either by acquiring more k-space data per excitation, achieved by

adjusting the pulse sequence used, or by reducing the number of total k-space points

acquired. Additionally, a combination of these two methods may be used.

Two pulse-sequence based methods for accelerating MRSI acquisition are TSI

and EPSI, based on the fast spin echo (FSE) imaging and echo-planar imaging (EPI)

techniques used in conventional MRI applications, respectively. TSI makes use of

multiple 180◦ refocusing RF pulses, each with unique phase encoding gradients, in

order to cover multiple k-space points for each excitation. In this case, each echo

will have a different T2 weighting (the reconstructed image will be most influenced by

the T2 weighting for central k-space acquisitions). However, the application of TSI is

limited by T2 values of the nuclei of interest, as signal decay will limit the number of

useful echoes that can be acquired [34]. TSI sequences for brain metabolite imaging,

where T2 relaxation times range between 100 − 400 ms [51], are limited to three or

5In the case of frequency encoding, a single resonance frequency is assumed and the chemical
shift information of interest in MRSI is typically lost.
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four echoes [34]. The T2 relaxation times of the fatty acid groups relevant to this

work, while variable, have been observed to be on the order of 50 ms for human liver

scans [47].

On the other hand, EPSI makes use of oscillating gradients during readout, de-

phasing and rephasing spins to produce what are known as gradient echoes. As only

spins that were dephased by these gradients are refocused, phase evolution resulting

from chemical shifts can be used in order to encode spectral information, while fre-

quency information can be used for spatial encoding. As such, each excitation, or

TR, can be used to acquire a line of k-space as opposed to a single point. However, in

this case the overlying exponential decay governing these echoes is characterized by

time constant T ∗2 as opposed to T2, as is the case for spin echo techniques. Thus, B0

inhomogeneities shortening T ∗2 , exacerbated by iron overload which may be present in

cases of NAFLD [20], will result in spatial artefacts such as blurring in the resulting

EPSIs as opposed to broadening of spectral lines.

Given the complications in applying these accelerated MRSI sequences for liver

fat imaging, including the above-mentioned limitations as well as respiratory motion,

this work makes use of a spin-echo based single point imaging technique, denoted SE-

SPI, similar to that portrayed in Figure 2.7. While acquiring a single k-space point

for each TR results in scan times which are too long for clinical application, SE-SPI

acquisition can be accelerated by reducing the amount of k-space data acquired.

2.4 K-space Undersampling for Accelerated MR Acquisition

One method for accelerating MRSI is to exclude components of high spatial frequency

in both the x and y directions, commonly done by limiting the acquisition of k-space

data to a circular region, as shown in Figure 2.12A. However, while this undersampling

has little impact on the resulting image, data reduction is typically no more than 40%

[34], and the resulting acceleration factors are not high enough to achieve clinically

feasible scan times for the purpose of this work.

Another method that makes use of k-space undersampling to accelerate MR ac-

quisitions is parallel imaging. Parallel imaging reduces the number of phase encoding

steps required by skipping entire k-space lines, shown in Figure 2.12B for the case of

skipping every second line along the ky direction. Reconstructing this k-space data
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Figure 2.12: K-space datasets (log-scaled to show detail in the periphery) along with
their corresponding images. (A) Fully sampled k-space dataset. (B) K-space dataset
omitting points with high spatial frequencies in x and y. (C) K-space dataset omitting
every second line along the ky dimension.

directly results in aliasing in the corresponding image. This aliasing is a consequence

of discrete sampling, described by separations ∆k in the frequency domain.

In general, discrete sampling of k-space produces images appearing periodically

in physical space, each image separated by a distance of 1/∆k, known as the field

of view (FOV ). While ∆k is typically chosen such that the FOV is large enough

that these images do not overlap, in the case of parallel imaging this is not the case.

However, the unaliased image can be obtained using data collected with multichannel

receiver coils, as the spatial dependence of coil sensitivity for each channel introduces

another degree of spatial encoding. This is either done by unwrapping signal in image

domain, using sensitivity encoding (SENSE) [52], or filling in the missing k-space data

in the frequency domain using generalized autocalibrating partial parallel acquisition

(GRAPPA) [53]. High acceleration factors, e.g. R = 4, can be achieved using parallel

imaging for MRSI, at the cost of SNR. While the application of parallel imaging

requires multichannel coils, this is typically only a limitation in preclinical settings;

the vast majority of clinical MR data is acquired using multichannel coils [54].

2.4.1 Compressed Sensing

While the two above-mentioned techniques accelerate MRSI acquisition by a regular

undersampling of k-space, compressed sensing techniques make use of pseudorandom
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undersampling. As was the case with parallel imaging, the main idea behind CS is

to remove the resultant aliasing during reconstruction in order to obtain the true

image. However, unlike parallel imaging this de-aliasing process is not done using

additional information acquired during the scan, but rather by making an assump-

tion about the nature of the data. Namely, that the data is well approximated by

some sparse representation. Sparse representations of data make use of sparsifying

transformations; i.e. the data is transformed to a basis in which it can be described

by weighting a number of basis functions much smaller than the size of the signal

itself. This concept is widely used in image compression applications, such as JPEG.

The key to acceleration using CS is, having acquired undersampled data, to be able to

recover the signal in its entirety using this sparsity assumption [55]. While MR data

is not always sparse, it is often compressible, meaning it can be well approximated

by a sparse representation [43, 55]. Although, the validity of this assumption relies

on having chosen an appropriate sparsifying transform.

The way in which sparsity can be used to remove this aliasing can be understood

as follows. Consider the time domain signal in Figure 2.13. The signal itself is sparse

in the frequency domain; as shown by the fully sampled Fourier transform (Figure

2.13A). Randomly undersampling and zero filling this signal will produce random,

incoherent aliasing in the frequency domain (Figure 2.13B); however, large compo-

nents of signal are still visible. This incoherency is an important distinction from the

coherent aliasing produced by equispaced undersampling in parallel imaging, whereby

the aliased peaks would be indistinguishable from the underlying signal. By enforc-

ing sparsity in the data (Figure 2.13C), we can pick out the largest peak component.

Furthermore, knowing the undersampling pattern we can determine the contribution

of this peak, with aliasing, to the total signal (Figure 2.13D). Subtracting this re-

sult from the total signal (2.13E) reveals another peak component. By iteratively

repeating this process the underlying signal can be recovered (2.13F-J) [56].

Given the above-mentioned incoherency requirement, the design of the under-

sampling patterns used in CS applications is very important. Completely random

undersampling produces random aliasing in the corresponding images, as shown in

Figure 2.14B. However, as shown in Figure 2.14A, k-space data is typically distributed

with the majority of signal attributed to the lower spatial frequency components. As
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Figure 2.13: Diagram demonstrating how a sparse signal can be reconstructed from
randomly undersampled data; based on [56].

shown in Figure 2.14C, preferentially sampling the centre of k-space retains the main

features of the image, and the aliasing produced by undersampling is more noise-like.

Thus, CS reconstructions of data acquired with this type of variable density under-

sampling, using a higher sampling density in the k-space centre as compared to the

periphery, perform better than those generated with completely random, or uniform

density undersampling [56].

While useful in demonstrating the main idea behind compressed sensing, the ex-

ample illustrated in Figure 2.13 is limited in that the signal itself is truly sparse, and

noise has been neglected. More formally, assume that in order to obtain a desired

image, x, k-space is pseudorandomly undersampled, producing measurements, y [55]:
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Figure 2.14: K-space datasets (log-scaled to show detail in the periphery) along with
their corresponding images. (A) Fully sampled k-space dataset. (B) Undersampled
k-space dataset generated with uniform density sampling. (C) Pseudorandomly un-
dersampled k-space dataset drawn from variable density undersampling with the same
undersampling factor.

y = Ax (2.17)

where A summarizes the randomly undersampled Fourier transform. Assume that

if x itself is not already sparse, it is well approximated by some sparse transformed

representation, Φx. As long as the noise produced by undersampling is incoherent

in the sparse representation, we can recover x by enforcing the sparsity of Φx. For

example, quantifying sparsity using some lp norm,6 commonly p = 1 or p = 2, x can

be well approximated using the following optimization problem [55]:

x∗ = argmin ||Φx||p s.t. ||Ax− y||2 ≤ ε (2.18)

The first term ensures a sparse representation of image, x, and the second ensures

that the recovered signal is consistent with the undersampled measurements, y, within

some degree of noise, ε. Alternatively, the optimization problem formulated in Equa-

tion 2.18 can be written as follows [55]:

x∗ = argmin ||Ax− y||22 + λ||Φx||p (2.19)

6The lp norm of vector, b is given by ||b||p =
∑n

i=1 (|bi|p)
1/p
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where the minimization problem contains both the data consistency and sparsity

enforcing terms, the latter weighted by some regularization parameter, λ. Larger

regularization parameters place more weight on the sparsity of the signal as opposed

to data consistency, and vice versa. Enforcing sparsity allows us to pick out the true

underlying signal from the noise-like aliasing produced by random undersampling,

reducing the degree of noise in the recovered image, x. However, as MRIs are often

not truly sparse, but well approximated by some sparse representation, placing too

large a weight on sparsity as opposed to data consistency results in the loss of low

contrast features from the recovered data [57, 58].

Blind Compressed Sensing

Anatomical MRIs, much like natural images, are known to be sparse through trans-

formations such as the wavelet and discrete cosine transforms [56]. However, for

dynamic imaging applications, sparsifying transforms in the time dimension are not

as well defined. This has led to the development of blind compressed sensing (BCS)

[57]. As opposed to assuming some sparse representation of the data a priori, BCS

learns the sparsifying transform from the data itself.

For a dynamic dataset with m voxels and n images acquired, the Casorati matrix7

of the MR image, X, is modelled as:

Xm×n = Um×rVr×n (2.20)

For spectroscopy applications, n is the number of timepoints acquired in encoding

each spectrum. V is a dictionary of r temporal basis functions used to represent

the data, and U a matrix of coefficients. As with typical CS implementations, this

signal is recovered by enforcing sparsity in the data, in this case by constraining

the coefficients, U , while maintaining data consistency. The distinction of BCS is

that both the dictionary, V , and coefficients, U , in Equation 2.20 are estimated in

the reconstruction process, as opposed to the coefficients alone, using an iterative

optimization algorithm, such that [59]:

7The Casorati matrix, Xm×n, contains the spatio-temporal MR signal from an image with m
pixels and n timepoints.
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{U∗, V ∗} = arg min ||A(UV )− Y ||2F + λ||U ||p s.t. ||V ||2F ≤ c (2.21)

As before, Y = AX represents the undersampled k-space data, now for all timepoints

(and coils, for multichannel data), with A summarizing the undersampled Fourier

transform (and coil sensitivities, if applicable) of the desired dynamic image set, X.

The Frobenius norm8 restriction on the dictionary, V , is used to prevent upscaling

of the temporal basis functions, allowing much smaller coefficients, U , and effectively

reducing the weight of the sparsity enforcing term. Given its close relation to the

regularization parameter, λ, c may be defined arbitrarily as c = 1; similar results can

be achieved with a different value of c, as long as λ is changed accordingly [57].

2.5 Hankel Singular Value Decomposition (HSVD)

Given the reconstructed MRSI, the dynamic dataset for our purposes, the fatty acid

composition information of interest to this work can be calculated as described in

Section 2.3. However, an important step was omitted in this discussion, that being

the extraction of the relative peak amplitudes used in Equations 2.13-2.15. Since a

vast number of voxels are acquired in many MRSI applications, automated quantifi-

cation of spectra is often necessary for any feasible clinical application. There are

many approaches to this type of spectral analysis; it can be done in the time or fre-

quency domains, and can require varying degrees of user input and prior knowledge

of the signal [60, 61]. For this work, an approach requiring no user input and with

limited prior knowledge of the signal was preferred. In the time domain, many such

approaches make use of a singular value decomposition of data arranged in a Hankel

matrix, denoted HSVD .

Given the signal equation in Equation 2.4, and the knowledge that MRS signals are

composed of varying frequency components, the time domain signal of these spectra

is often modelled as [62]:

S(t) =
N∑

n=1

an exp(iφn) exp(iωnt) exp(−dnt) (2.22)

8The Frobenius norm of a matrix, Bn×m, is given by ||B||F =
√∑n

i=1

∑m
j=1 |Bij |2
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where N is the number of frequency components, and an the amplitude, φn the phase,

ωn the angular frequency, and dn the damping factor associated with each of these

frequency components. Assume the signal consists of i timepoints. This data is

arranged in a Hankel matrix, Hl×m, as follows [63]:

Hl×m =


S0 S1 · · · Sm−1

S1 S2 · · · Sm

...
...

. . .
...

Sl−1 Sl−2 · · · Si−1

 (2.23)

where i = l + m − 1, m > N , and l > N . Assuming the signal model in Equation

2.22, the rank of H, i.e. the maximum number of linearly independent rows, would be

N . However, for MRS signals H is actually full rank, a result of noise. The singular

value decomposition of this matrix factors it in the following form [63]:

Hl×m = Ul×lΣl×mV
∗
m×m (2.24)

where Σ is a diagonal matrix containing what are called the singular values of H (real

and non-negative), and the columns of U and V (both unitary matrices) denoted the

left and right singular vectors corresponding to those singular values, respectively. By

convention, these singular values are arranged in descending order (σ11 > σ22 > σ33 >

· · · ). Thus, assuming adequate SNR, the true signal components can be separated

from the noise by truncating this signal representation in Equation 2.24 to rank N

[62]:

Hl×m = Ul×NΣN×NV
∗
N×m (2.25)

This representation is similar in form to the Vandermonde decomposition, which

represents the signal in terms of its amplitude, phase, frequency, and damping com-

ponents. Knowing the transformation between these two representations, the pa-

rameters of interest, namely an, φn, ωn, and dn, can be extracted from the HSVD.

[63].
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Acquisition and Processing Pipeline

3.1 Undersampling Pattern Generation

Figure 3.1: (A) Square shells used for the 2D CIRCUS implementation. (B) Spherical
shells (slice Z = 8) used for the 3D CIRCUS implementation. (C) 2D undersampling
pattern (R = 3). (D) 3D undersampling pattern (R = 5.5, slice Z = 8).

For this work, SE-SPI measures of fat composition were assessed both for fully

sampled and accelerated scans. In the latter case, k-space undersampling patterns

were generated using CIRcular Cartesian Undersampling (CIRCUS), which generates

undersampling patterns by selecting points from a set of nested square shells [64]. For

an N × N image there are N/2 such shells, of sizes ranging from 2 × 2 to N × N .

Selecting a constant number of points from each square shell results in a variable

32
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density sampling pattern, with higher density sampling near the k-space center. The

distribution of k-space sampling can be adjusted further by changing the number of

points sampled for each shell. In either case, the points sampled are chosen based

on a golden angle sampling strategy [65], ensuring a relatively uniform sampling

distribution.

Since SE-SPI allows for undersampling in all spatial dimensions, the CIRCUS

technique was modified to generate undersampling patterns in 3D. In this case, the

undersampling patterns were generated by selecting points from a set of nested spher-

ical shells, as pictured in Figure 3.1B, alongside the square shells used for the 2D

implementation and corresponding undersampling patterns. Varying the incremental

change in radius of these spherical shells ensured that the periphery of k-space was

not too highly undersampled. The outer radius of the nth shell, n = 1 . . . N/2, was

calculated from [66]:

Rn =
√

(n− 1) ∗N/2 + 9 (3.1)

3.2 Respiratory Motion Correction

In addition to the long scan times associated with single point imaging techniques, in

vivo spectroscopic imaging of the liver is complicated by respiratory motion. Motion

corrupted points can be removed retrospectively using respiratory bellows or naviga-

tors, the latter of which track motion using additional RF pulses during the imaging

sequence. Respiratory motion in the SE-SPIs used for this work was corrected ret-

rospectively based on navigator signal, acquired following slice selection and prior to

phase encoding, as shown in Figure 3.2A. While many navigators for clinical appli-

cation use readout gradients in order to obtain line profiles of the image, in this case

the phase of the navigator signal alone was sufficient for motion correction. K-space

points whose phase fell outside one standard deviation of the average (corrected for

drift) corresponded well with periods of motion as measured using respiratory bellows,

shown in Figure 3.2B, and were thus removed prior to reconstruction.

Using this type of retrospective motion correction there is no way of knowing

which points will be removed before the scan. This poses an issue for CS applica-

tions, as an appropriate pseudorandom undersampling pattern is vital to the quality
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Figure 3.2: (A) SE-SPI sequence diagram with navigators for retrospective motion
correction. (B) Comparison of mouse respiratory traces as measured using respiratory
bellows and navigators in mice. Red points indicate navigator signals larger than one
standard deviation of the average; such points were omitted prior to reconstruction.
Reproduced from Rioux et al. [66]

of reconstruction. For this work, undersampling was based on CIRCUS [64]. Ac-

quiring a number of undersampling patterns with golden angle strategy [65] ensured

combination of multiple patterns with minimal overlap, as shown in Figure 3.3A.

Disproportionately oversampling the k-space center ensured proper k-space sampling

following retrospective motion correction, as shown in Figures 3.3B-C.

Figure 3.3: (A) Degree of sampling for each point in k-space (slice Z = 8) combining
multiple 3D undersampling patterns. (B) K-space dataset acquired with the under-
sampling pattern given in (B), log-scaled to show detail in the periphery. (C) The
same k-space dataset (also log-scaled) having removed motion-corrupted points.
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Figure 3.4: Flowchart summarizing the identification of the water resonance.

3.3 Spectral Processing

Undersampled data was reconstructed using BCS, as discussed in Section 2.4.1, using

code provided by Bhave et al. [59]. Following reconstruction, spectra were processed

using an HSVD-based binning algorithm that computed relative amplitudes of the

six fat peaks and the water peak, as follows:

Step 1: Identification of the water peak The water resonance was identified

as summarized in Figure 3.4. An initial HSVD was done assuming few

frequency components (seven to nine). Assuming a smaller number of

components, the HSVD process is less likely to fit single peaks with multi-

ple components, as shown in Figure 3.5A, and less likely to pick out noise

components. Baseline components were removed based on a damping (i.e.

linewidth) constraint. Assuming the tallest peak was the water peak (4.9

ppm), components within the expected bin of the methylene peak (1.3

ppm) were identified (see Table 3.1). If present, the water peak was lo-

cated at the frequency of the tallest peak. Else, assuming the methylene

peak was the tallest peak, components of the water and methene peaks (5.3

ppm) were identified using the expected bins. If present, the methylene
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Figure 3.5: Processing of a PRESS spectrum for a 20% soybean oil tube. All spectra
shown are unphased, absolute values displayed. (A) Initial HSVD assuming few
components (seven), used in order to identify the water peak. (B) HSVD assuming
more components (25), used in order to identify all peaks for binning purposes. (C)
Lorentzian fit to two components falling within the bin for the methylene peak. (D)
Lorentzian fits to all six fat peaks, as well as the water peak.

peak was labelled as the tallest peak, and the water peak located at the

appropriate frequency shift. Else, water was defined at the frequency of

the tallest peak, assuming the methylene peak was too small to be located.

Step 2: HSVD to fit spectrum The main HSVD was used to pull out important

spectral components. This was done assuming more components (N >

10). While using more components is more likely to pick out noise in the

spectrum, it provides a better fit to the data, especially for smaller peaks

(see Figure 3.5B). Baseline components were again removed based on a

linewidth constraint.
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Table 3.1: Bins, based on those described in Johnson et al. [23], used in separating
the fatty acid functional groups for phantom experiments. Bins were determined in
reference to the water resonance, taken as 4.9 ppm, as expected for temperatures near
20◦C [67]. Changes in the bin for the methyl peak for results of the clinical system
were made based on visual assessment of PRESS spectra.

Peak Frequency Bins (ppm)
Preclinical Experiments Clinical Experiments

Methene (Peak 1) 5.15− 5.45 5.15− 5.45
Water 4.60− 5.20 4.60− 5.20

Diallylic (Peak 2) 2.65− 2.95 2.65− 2.95
α-Methylene to carboxyl (Peak 3) 2.15− 2.45 2.15− 2.45

Allylic (Peak 4) 1.83− 2.13 1.83− 2.13
Methylene (Peak 5) 1.15− 1.45 1.15− 1.45

Methyl (Peak 6) 0.61− 0.91 0.73− 1.03

Step 3: Binning of components Based on the expected peak locations relative

to the water peak, HSVD components were binned in one of the six fat

peaks or the water peak. Peaks outside of these bins were removed. If

multiple components were assigned to a single peak, a complex Lorentzian

was fitted to the sum of these components [68], as shown in Figure 3.5C.

In general, no prior knowledge of relative peak amplitudes was used in

this binning process. However, in order to prevent the assignment of water

peak components to the methene peak, especially in cases of peak splitting

for in vivo PRESS measurements, large components (defined relative to

the amplitude of the methylene peak) within the methene bin were omitted

in some cases.

Step 4: Computation of relative peak amplitudes Relative peak amplitudes

were determined from the area under the Lorentzian fits, shown in Figure

3.5D. The fat fraction was calculated as follows:

FF =

6∑
n=1

an

aw +
6∑

n=1

an

(3.2)
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where a1 to a6 are the amplitudes of each fat peak and aw that of the

water peak. Given the relative amplitudes of each fat peak, UI, UIs, and

PUI were calculated as described in Equations 2.13-2.14.

It is important to clarify that this spectral processing was performed for each

individual SE-SPI voxel, as opposed to a sum of spectra within a region of interest

(ROI). Summing spectra within an ROI would result in an improved SNR prior to

the HSVD. However, since spectra were not phased prior to this decomposition, phase

drifts across the ROI, observed to be on the order of π radians for the same fat peak

in some cases, resulted in partial cancelation of peaks from voxel to voxel.

It is also important to distinguish the signal fat fraction given in Equation 3.2 from

the proton density fat fraction (PDFF) often used in MRI applications for NAFLD.

Calculation of the PDFF would require correcting for confounding factors such as T1

saturation and T2 relaxation, as differences in the T1 and T2 relaxation times of fat

and water, in addition to their proton densities, will also affect their relative signal

magnitudes [69]. While determining these T1 and T2 relaxation times would have

enabled such a correction, this was not necessary for comparison of results acquired

with matched TR/TE.

On a similar note, individual fat peaks have also been shown to have different

relaxation properties [47, 70]. As such, the fat composition metrics, UI, UIs, and

PUI, computed here should not be taken as proton density measures, but relative

metrics, and are unlikely to equate with literature results acquired with different

acquisition parameters (e.g. field strength, TR, TE).

3.4 Methods

3.4.1 Phantom Design and Acquisition

Prior to evaluating SE-SPI for lipid composition quantification, phantom studies were

performed to inform the choice of post processing parameters. This was assessed on

both preclinical and clinical imaging systems using a set of five 100% oil samples;

namely flaxseed (Flora, unrefined from Organic Earth Market, Halifax, Canada),

peanut (No Name from Atlantic Superstore, Halifax, Canada), safflower (Spectrum

Naturals, refined, from Organic Earth Market, Halifax, Canada), sesame (Spectrum
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Naturals, unrefined, from Organic Earth Market, Halifax, Canada), and soybean oils

(Mazola Vegetable Oil from Atlantic Superstore, Halifax, Canada). For imaging with

the preclinical system, these oils were contained in 10 mm diameter NMR tubes. For

imaging with the clinical system, they were contained in 60 ml sample containers

(diameter ≈ 4 cm). Another set of soybean oil tubes of varying fat fraction (20%,

15%, 10%, and 5%) were made up from dilutions of Intralipid, or intravenous (IV) fat

emulsion (20% soybean oil, Fresenius Kabi, Bad Homburg, Germany). A Gadolinium

contrast agent (Gadoteridol, Bracco Imaging, Milan, Italy) was added to these soy-

bean oil emulsions in order to attain relevant water T1 values (T1 ≈ 1000 ms, about

0.16 mM per volume of water). The results of imaging these tubes with the clinical

system are omitted from this work due to coalescence of the soybean oil emulsions.

Lipid composition quantification was first assessed on the 3T preclinical MRI

system, a product of Oxford Instruments (Concord, US), operated using a Varian

(Palo Alto, US), later Agilent (Santa Clara, US) console. All preclinical data was

acquired using a quadrature RF coil (Doty Scientific, Columbia, US) with an inner

diameter of 30 mm. SE-SPI parameters were consistent for all preclinical experiments,

including those given in Chapters 4 and 5, with TR/TE = 200/13 ms, receiver

BW = 3 kHz, FOV = 30 × 30 × 10 mm, and 512 points acquired at each readout.

2D scans were acquired in a 64 × 64 matrix, and 3D scans in a 64 × 64 × 8 matrix.

For PRESS, acquisition parameters were matched to those of SE-SPI (5× 5× 5 mm

voxel, 25 averages).

Having assessed the viability of SE-SPI in a preclinical setting, it was then evalu-

ated on a 3T GE MR750 scanner (GE Healthcare, Waukesha, US). Data was acquired

using both single channel and 32-channel head coils, as well as a 32-channel cardiac

coil (GE Healthcare, Waukesha, US). For clinical PRESS acquisitions, TR/TE could

not be matched to that intended for clinical SE-SPI scans due to limitations of the

clinical system. Instead, PRESS voxels were acquired using TR/TE = 250/29 ms

(BW = 3 kHz, 2× 2× 2 cm voxel, 512 points acquired at each readout, 32 averages

with the single channel coil, 16 averages with the multichannel coils). Individual

tubes were shimmed with higher order shimming prior to all PRESS acquisitions.

Coil combination for PRESS data was done using GE reconstruction software. Given

the variety of coils and imaging parameters used for SE-SPI acquisitions, SE-SPI
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parameters for clinical experiments will be stated separately in Sections 3.4.3, 3.4.4,

and 4.1.

3.4.2 Choice of Parameters: Spectral Analysis

As briefly discussed earlier in Section 3.3, the number of frequency components as-

sumed in the HSVD-based spectral decomposition can have an impact on quantifica-

tion. Namely, assuming too few components will not accurately model the spectrum,

while assuming too many components will result in an increased noise contribution.

As such, the optimal number of frequency components was assessed prior to the

direct assessment of fat composition quantification. Given the impact of MR acqui-

sition parameters on lipid composition quantification, also discussed in Section 3.3,

consistency was used as a measure of decomposition quality as opposed to agreement

with a gold standard such as literature results. Furthermore, given inconsistencies in

shimming the phantoms from session to session, intrasession reliability was preferred

over intersession reliability.

With the preclinical imaging system, five pairs of PRESS voxels were acquired for

each of the soybean oil tubes of varying fat fraction in order to assess this intrasession

reliability. For comparison, a similar analysis was performed for a single session

imaging the pure oil phantom (five pairs of PRESS voxels of varying pure oil samples).

Tubes were rearranged and reshimmed for each session. With the clinical imaging

system, six pairs of PRESS voxels were acquired for each pure oil tube; three pairs

with the single channel head coil and three with the 32-channel head coil.

In both cases, the number of frequency components assumed in the spectral de-

composition was determined from:

N = arg min
5∑

tube=1

6∑
peak=1

∑
session

(A1(N)− A2(N))2 (3.3)

where A1 and A2 are the relative fat peak amplitudes determined from the first

and second PRESS measurements within a single session, respectively, and N the

number of components assumed in the HSVD. Numbers of components ranging from

10 ≤ N ≤ 30 were considered. Assuming fewer than N = 10 components resulted

in many of the smaller fat peaks being missed, even without the presence of a water
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peak.

In order to ensure that assuming this number of components, N , given by Equation

3.3 was also appropriate for SE-SPI spectra, a similar analysis was performed with

results from the preclinical system, comparing fat peaks amplitudes calculated from

PRESS data to those calculated from an SE-SPI acquired in the same session.

3.4.3 Choice of Coil Combination Weightings

All preclinical experiments were performed with a single channel coil. However, for

clinical implementation multichannel coils are preferred. Thus, a variety of coil com-

bination methods were investigated for SE-SPI reconstruction prior to the assessment

of fatty acid composition measurements. Three 2D fully sampled SE-SPIs were ac-

quired with each head coil, using TR/TE = 200/11 ms, receiver BW = 4 kHz,

FOV = 20× 20× 1 cm, a 64× 64 matrix, and 512 points acquired at each readout.

Single channel SE-SPI measurements were compared with those made with the multi-

channel head coil using a variety of coil combination weightings, following a 0th-order

phase correction. In total, four coil weightings were investigated, as summarized in

Table 3.2, based on those described by Hall et al. [71]. Noise was quantified in the

frequency domain as the standard deviation in areas free of expected peaks [72, 73].

Weightings taking signal magnitude into account were tested using both the signal

itself (quantified as the maximum magnitude of the FID) as well as coil sensitivities,

obtained with GE’s ASSET calibration scan. Prior to the calculation of these coil

sensitivities, multichannel data was compressed to 8 virtual channels using the BART

toolbox [74].

Table 3.2: Summary of coil combination weightings investigated for clinical experi-
ments. w indicates the weight applied to the signal of a single channel, S the relative
signal magnitude measured with that channel, C a measure of coil sensitivity obtained
using a calibration scan, and N a measure of noise of the channel.

Description Weightings Used
Equal Weighting w = 1
Signal Weighting w = S or w = C
SNR Weighting w = S/N or w = C/N
S/N2 Weighting w = S/N2 or w = C/N2
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3.4.4 Choice of Parameters: Compressed Sensing Reconstruction

Having chosen the number components, N , to assume in spectral analysis, and coil

combination weightings for clinical SE-SPI data, the next step was to determine

what parameters to use for the BCS reconstruction, performed using code provided

by Bhave et al. [59]. The quality of this reconstruction is dependant on a number

of factors, including the regularization parameter, λ, the number of basis functions,

r, and the number of iterations, niter used for reconstruction, as discussed in Section

2.4.1. Furthermore, the maximum signal magnitude of the undersampled k-space

data, equivalently defined as the scaling factor, s, applied to data normalized to a

maximum signal magnitude of one, was also observed to have an impact on the results

of the BCS reconstruction. As such, a variety of combinations of reconstruction

parameters were considered, as summarized in Table 3.3. Remaining reconstruction

parameters were left unchanged.

Table 3.3: BCS parameters investigated, namely the numbers of iterations, niter,
numbers of basis functions, r, regularization parameters, λ, and scaling factors, s.

Parameter Value
niter 15, 30, 50
r 25, 30, 35, 40, 45
λ 0.0001, 0.001, 0.005, 0.01, 0.05
s 0.1, 0.5, 1, 2, 10

With the preclinical system, a fully sampled 3D scan of the soybean oil emul-

sions was acquired, taking 3.5 hours, and the effects of changing BCS reconstruction

parameters assessed retrospectively. A 3D scan was used given that 3D SE-SPIs

were acquired in the mouse study. Similarly, the retrospective undersampling factor

used was R = 5.5 in order to match that observed in the mice; while mouse scans

were prospectively accelerated by a factor of R = 4, retrospective motion correction

resulted in an undersampling of k-space by a factor of R ≈ 5.5.

With the clinical system, a fully sampled 2D SE-SPI was acquired using the cardiac

coil with TR/TE = 200/11 ms, BW = 4 kHz, FOV = 32 × 32 × 1 cm, a 64 × 64

matrix, and 512 points acquired at each readout. This scan was then retrospectively

undersampled by a factor of R = 3 and reconstructed with the BCS parameter
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combinations summarized in Table 3.3. In this case, R was chosen based on that

observed in preliminary quality assurance scans of the CS SE-SPI sequence, with

human subjects, used in developing the clinical protocol. In order to achieve a 10

minute acquisition time, scans were prospectively accelerated by a factor of R = 1.4.

Following motion correction, k-space was undersampled by a factor of R ≈ 3.

In both cases, the quality of each reconstruction was quantified using the pixel-

wise mean squared error (MSE) of each relative fat peak amplitude in each of the five

oil tubes, relative to the fully sampled scan, as depicted in Figure 3.6 using a scan

acquired with the preclinical system. A single MSE was determined for each set of

BCS reconstruction parameters by averaging over the six fat peaks and five oil tubes:

Figure 3.6: Diagram demonstrating the calculation of MSE used in order to assess
the quality of BCS reconstructions with varying reconstruction parameters. For the
preclinical system, a fully sampled 3D SE-SPI of five soybean oil tubes of varying fat
fraction (100%, 20%, 15%, 10%, and 5%, as indicated) was retrospectively undersam-
pled by a factor of R = 5.5, and reconstructed using BCS. Relative peak amplitudes
for each of the six fat peaks were calculated for both the fully sampled and retrospec-
tively accelerated scans. In order to limit computation time, only two of the 16 slices
were considered; one central slice (z = 8, not shown) and one more peripheral slice
(z = 12, as shown). The MSE between fully sampled and BCS reconstructed results
were calculated individually for each fat peak and oil tube.
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MSE(niter, r, λ, s) =
1

5

5∑
tube=1

1

6

6∑
peak=1

MSE(niter, r, λ, s)tube,peak (3.4)

3.5 Results

3.5.1 Choice of Parameters: Spectral Analysis

Figure 3.7: Squared differences between fat peak amplitudes measured by each pre-
clinical PRESS pair, summed over the six fat peaks and five repetitions for each of
the soybean oil tubes (in black), as well as that summed over the five fat fractions (in
blue), as a function of assumed spectral components, N . Gaps in the plots indicate
undefined results, either due to failed HSVD or failure to detect one or more of the
fat peaks.

Using Equation 3.3, the preferred number of components to assume in analyzing

the preclinical soybean oil emulsions was found to be N = 25. Plots of the total sum of

squared differences and that for the individual tubes are given in Figure 3.7. Results

are shown for numbers of components ranging from 20 ≤ N ≤ 30, since using fewer

than N = 20 components resulted in many of the smaller fat peaks going undetected

by the HSVD. A similar check computing the difference between PRESS and SE-SPI

measurements acquired within a single session indicated 24−25 components provided

the best agreement (data not shown). As such, it was assumed that using N = 25
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components would be appropriate for both techniques. Also using Equation 3.3, the

optimal number of HSVD components to use when analyzing the preclinical pure oil

tubes was found to be N = 13.

Similarly, the preferred number of HSVD components to use in analyzing the clini-

cal pure oil tubes was found to beN = 14. Plots of the total sum of squared differences

are given in Figure 3.8, showing an upward trend in intrasession variability with in-

creasing numbers of HSVD components. Given that the trend in HSVD behaviour

was not as smooth as that observed with the preclinical soybean oil tubes, shown in

Figure 3.7, results are shown for a larger range of HSVD components (N = 10 to

N = 50) to provide additional confidence in the validity of this trend.

Figure 3.8: Squared differences between fat peak amplitudes measured by each clinical
PRESS pair, summed over the six fat peaks, six repetitions, and five oil types, as a
function of the assumed number of spectral components, N . For N < 14 some of the
smaller fat peaks could not be detected.

3.5.2 Choice of Coil Combination Weightings

Given in Figure 3.9 are the fatty acid composition indices calculated from fully sam-

pled SE-SPIs acquired using a single channel head coil, along with those calculated

from scans acquired with the multichannel head coil using a variety of weighting fac-

tors for coil combination. In most cases, changing these weightings did not have a
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Figure 3.9: Unsaturation (UI), surrogate unsaturation (UIs), and polyunsaturation
(PUI) indices (mean ± 95% CI over 3 scans) for the flax, soybean, sesame, saf-
flower, and peanut oil tubes as measured using the clinical system with the single
and multichannel head coils. In the latter case, results are shown for a variety of coil
combination weightings.

large impact on fatty acid quantification. As such, signal weightings using coil sen-

sitivity (w = C) were chosen as this method was already implemented in the BCS

code provided.

3.5.3 Choice of Parameters: Compressed Sensing

Shown in Figure 3.10 is the fully sampled 3D SE-SPI used to investigate the impact

of changing BCS reconstruction parameters on fat composition quantification with

the preclinical system. The SNR for central slices of the SE-SPI was much better

than that for peripheral slices due to limitations of the preclinical RF pulses used for
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slice selection.

The effect of varying BCS parameters on the relative fat peaks amplitudes can

be seen from Figures 3.11-3.14. As shown in Figure 3.11, increasing the number of

iterations used in the BCS reconstruction improved fatty acid quantification, although

this effect was relatively small for the numbers of iterations considered in this work.

Furthermore, reconstructions with 50 iterations encountered errors more frequently

and required longer reconstruction times. Increasing the number of basis functions

used in the BCS reconstruction from r = 25 to 45 also had little impact on fat

quantification results, as shown in Figure 3.12.

Given in Figure 3.13 are the results or performing the BCS reconstruction while

varying the reconstruction parameter, λ. Small values of λ resulted in reconstructions

with a significant amount of residual noise-like aliasing. As λ was increased more of

this noise-like aliasing was removed in the reconstruction.

Given in Figure 3.18 are the results of performing BCS reconstructions with vary-

ing scale, s. In this case, large scaling factors resulted in increased noise in the re-

construction, while reconstructions done with smaller scaling factors were less likely

to pick out the small fat peaks. In the case of s = 0.5, the entirety of the fat signal

was attributed to the largest fat peak (methylene, Peak 5), except in the case of the

100% soybean oil tube.



48

Figure 3.10: Slices (Z = 1 . . . 16) of the fully sampled preclinical 3D SE-SPI (one
timepoint) of the soybean oil phantoms used to investigate the impact of changing
BCS reconstruction parameters on fat composition quantification.
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Figure 3.11: Maps (slice Z = 12) of relative peak amplitudes for fat peaks 1-6 as
calculated from the 12th slice of the fully sampled preclinical 3D SE-SPI (top row),
as well as those calculated from retrospectively accelerated scans (R = 5.5) with
varying numbers of iterations (niter = 15, 30, 50). Remaining BCS parameters used
are as given in Table 3.4.
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Figure 3.12: Maps (slice Z = 12) of relative peak amplitudes for fat peaks 1-6 as
calculated from the 12th slice of the fully sampled preclinical 3D SE-SPI (top row), as
well as those calculated from retrospectively accelerated scans (R = 5.5) with varying
numbers of basis functions (r = 25, 30, 35, 40, 45). Remaining BCS parameters used
are as given in Table 3.4.
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Figure 3.13: Maps (slice Z = 12) of relative peak amplitudes for fat peaks 1-6 as
calculated from the 12th slice of the fully sampled preclinical 3D SE-SPI (top row),
as well as those calculated from retrospectively accelerated scans (R = 5.5) with
varying regularization parameters (λ = 0.0001, 0.001, 0.005, 0.01, 0.05). Remaining
BCS parameters used are as given in Table 3.4.
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Figure 3.14: Maps of relative peak amplitudes for fat peaks 1-6 as calculated from the
12th slice of the fully sampled preclinical 3D SE-SPI (top row), as well as those cal-
culated from retrospectively accelerated scans (R = 5.5) with varying scaling factors
(s = 0.1, 0.5, 1, 2, 10). Remaining BCS parameters used are as given in Table 3.4.
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Given the frequent occurrence of errors in BCS reconstructions done with 50 iter-

ations, and the similarity in fat composition quantification to those done with 30 it-

erations, as shown in Figure 3.11, only those reconstructions done using niter = 15, 30

were considered. The combination of reconstruction parameters which minimized the

MSE in relative fat peak amplitudes relative to the fully sampled scan, as measured

using the preclinical system, are summarized in Table 3.4. This set of parameters was

thus used for the analysis of all CS results in this work.

Table 3.4: BCS parameters, namely the number of iterations, niter, number of basis
functions, r, regularization parameter, λ, and scaling factor, s, which minimized the
MSE in relative fat peak amplitudes between the fully sampled preclinical 3D dataset
and that retrospectively accelerated by a factor of R = 5.5.

Parameter Value
niter 30
r 35
λ 0.01
s 2

Maps of relative fat peaks amplitudes, as measured with the clinical system, re-

constructed with varying BCS parameters are given in Figures 3.15-3.18. As was the

case with the preclinical data, BCS reconstructions done with 50 iterations commonly

encountered errors during reconstruction. MSE results were, on average, smaller by

one order of magnitude than those seen with the preclinical soybean oil tubes of vary-

ing fat fraction. For the most part, compared with preclinical results, varying these

parameters did not produce a visible change in the resulting fat peak amplitudes. One

exception to this rule is the reconstruction performed using a scaling factor of s = 0.1,

shown in Figure 3.18. In this case, fat signal seems to have been misattributed to

the methene peak (Peak 6). Nonetheless, as the results shown here do not suggest a

preferred set of reconstruction parameters, those parameters given in Table 3.4 were

also used for the clinical results of this work.
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Figure 3.15: (Top) Fully sampled clinical 2D SE-SPI of the pure oil tubes (top row,
from left to right are the soybean, sesame, safflower, peanut, and flax oil tubes) and
soybean oil emulsions (bottom row, from left to right are 0%, 5%, 10%, 15%, and
20% soybean oil), along with maps of relative peak amplitudes for the safflower tube.
Remaining rows are those generated from retrospectively accelerated scans (R = 3)
with varying numbers of iterations (niter = 15, 30, 50). Remaining BCS parameters
used are as given in Table 3.4.
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Figure 3.16: (Top) Fully sampled clinical 2D SE-SPI of the pure oil tubes (top row,
from left to right are the soybean, sesame, safflower, peanut, and flax oil tubes) and
soybean oil emulsions (bottom row, from left to right are 0%, 5%, 10%, 15%, and
20% soybean oil), along with maps of relative peak amplitudes for the safflower tube.
Remaining rows are those generated from retrospectively accelerated scans (R = 3)
with varying numbers of basis functions (r = 25, 30, 35, 40, 45). Remaining BCS
parameters used are as given in Table 3.4.
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Figure 3.17: (Top) Fully sampled clinical 2D SE-SPI of the pure oil tubes (top row,
from left to right are the soybean, sesame, safflower, peanut, and flax oil tubes)
and soybean oil emulsions (bottom row, from left to right are 0%, 5%, 10%, 15%,
and 20% soybean oil), along with maps of relative peak amplitudes for the safflower
tube. Remaining rows are those generated from retrospectively accelerated scans
(R = 3) with varying regularization parameters (λ = 0.0001, 0.001, 0.005, 0.01, 0.05).
Remaining BCS parameters used are as given in Table 3.4.
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Figure 3.18: (Top) Fully sampled clinical 2D SE-SPI of the pure oil tubes (top row,
from left to right are the soybean, sesame, safflower, peanut, and flax oil tubes) and
soybean oil emulsions (bottom row, from left to right are 0%, 5%, 10%, 15%, and
20% soybean oil), along with maps of relative peak amplitudes for the safflower tube.
Remaining rows are those generated from retrospectively accelerated scans (R = 3)
with varying scaling factors (s = 0.1, 0.5, 1, 2, 10). Remaining BCS parameters used
are as given in Table 3.4.



58

3.6 Discussion

3.6.1 Choice of Parameters: Spectral Analysis

For this work, spectra were processed using an HSVD-based binning algorithm. As

the assumed number of components, N , in this decomposition can influence spectral

quantification, it is important to consider what number is most appropriate for the

application of interest [75]. While this work was concerned with six main fat peaks

and the water peak, when applicable, more components are required in order to

accurately model the spectrum. For one, additional fat peaks are present, such as

those located from 4.0 − 4.3 ppm, as shown in Figures 4.2 and 4.6. While these

peaks are not considered for this work, no such prior knowledge can be input into the

HSVD, and so must be taken into account in choosing N . Furthermore, variations in

B0 cause these MRS signals to deviate from the Lorentzian form assumed in Equation

2.22, meaning certain peaks may be modelled with more than one component [76].

As such, 10 ≤ N ≤ 30 components were considered for this work.

In the case of the preclinical soybean oil emulsions, results presented in Figure

3.7, assuming too few components resulted in many of the smaller fat peaks being

missed entirely (N < 20), or introduced more intrasession variability (20 ≤ N ≤ 23),

likely a result of inadequate modelling of these small fat peaks, as shown in Figure

3.5A. However, assuming too many components (N > 25) allowed more noise to be

included in the model, also a source of intrasession variability. Assuming 25 HSVD

components appears appropriate for this application. Without the presence of the

water peak, as was the case for the pure oil tubes, fewer components (N ≈ 14)

were required to accurately model the spectrum, and including more components

simply included more noise in the model, as shown by the clinical pure oil results

in Figure 3.8. However, given that no prior knowledge of FF was assumed for in

vivo applications, 25 components were assumed in analyzing the preclinical data,

regardless of fat fraction. On the other hand, as phantom experiments with the

clinical system were limited to the pure oil tubes, 14 components were assumed in

this case. For future applications analyzing spectra containing a water signal, more

components will likely be required.
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3.6.2 Choice of Parameters: Compressed Sensing Reconstruction

SE-SPI, being an inherently slow imaging technique, was accelerated in this work us-

ing BCS. As with typical CS implementations, the choice of regularization parameter,

λ, affects the performance of this reconstruction. Namely, larger values of λ reduce

the degree of noise in the recovered images, but may also result in the loss of low

contrast features [57, 58]. This noise reduction with increasing λ is apparent from

the preclinical results in Figure 3.13; MSE was minimized by using λ = 0.01. Clinical

results, on the other hand, showed little dependance on the regularization parameter,

as shown in Figure 3.17. In general, the clinical results seemed less dependant on

reconstruction parameters, likely due to the smaller acceleration factor (R = 3 as

opposed to R = 5.5), as well as the fact that they were limited to the pure oil tubes.

In addition to the regularization parameter, BCS introduces another reconstruc-

tion parameter, that being the number of basis functions, r. Assuming too few basis

functions has been shown to result in inadequate modelling of signal, but since they

are estimated from the data itself, the number of basis functions is inherently limited

by the amount of data collected. Studies using BCS for acceleration of cardiac imag-

ing have shown that reconstruction errors generally decrease with increasing numbers

of basis functions, stabilizing at around r = 20 [57]. However, given the difference

in temporal behaviour of signal for this work, varying numbers of basis functions

(r = 25, 30, 35, 40, 45) were investigated. Visually, the relative fat peak amplitudes

did not seem to be largely affected by changing the number of basis functions in this

range as shown for the preclinical and clinical phantom studies in Figures 3.12 and

3.16, respectively. Since r = 35 minimized the MSE for the preclinical results, 35

basis functions were used for this work.

Two last parameters were investigated for this work, the first being the number

of iterations used in optimizing the minimization problem posed in Equation 2.21.

Although not apparent from the relative fat peak amplitude maps in Figures 3.11

and 3.15, increasing the number of iterations from 15 to 30 generally reduced the

MSE. However, reconstructions using 50 iterations commonly encountered errors;

thus, niter = 30 was chosen for this work.

The scale of the input data, Y , was also observed to impact reconstruction quality.

As portrayed by the preclinical results in Figure 3.14, using larger scaling factors
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resulted in noisy images, while reconstructions done with smaller scaling factors had

the potential to miss low contrast features, exemplified by the s = 0.5 case in Figure

3.14. These results are what would be expected of CS reconstructions performed with

too small or too large a regularization parameter, respectively, and may be explained

using Equation 2.21; essentially, upscaling of the undersampled k-space data, Y , can

reduce the relative weighting of λ, and vice versa. Nonetheless, since a scaling factor

of 2 clearly minimized the MSE relative to the fully sampled preclinical scan, s = 2

was chosen for this work. As with the aforementioned reconstruction parameters,

the clinical scans shown in Figure 3.18 were not visibly affected by changes in scale,

except in the case of very small scaling factors.

It should be noted that these phantom setups were limited in the number of oils

present and that samples were contained within discrete tubes, a more ‘sparse’ set-up,

both temporally and spatially, than in vivo applications. Nonetheless, these results do

demonstrate the unreliability of certain combinations of reconstruction parameters.

In the most extreme example shown, that scaled by a factor of s = 0.5 in Figure 3.14,

it can be seen that all of the smaller fat peaks are missed in the soybean oil emulsions,

and the entirety of the fat signal attributed to the largest peak, methylene (Peak 5).



Chapter 4

Phantom Validation

4.1 Methods

Having finalized the post processing pipeline, the agreement between PRESS mea-

surements and those made using SE-SPI was assessed for the pure oil tubes, and,

for the preclinical experiments, the soybean oil tubes of varying fat fraction. While

measures of fat composition are the focus of this work, the fat fractions of the set of

soybean oil tubes are an important measure of aliasing in the CS SE-SPI results.

With the preclinical system, five fully sampled 2D SE-SPIs of each oil tube set

(either the five soybean oil tubes of varying fat fraction or the five pure oil tubes) were

acquired, taking 13.5 minutes each. With the clinical system, four fully sampled 2D

SE-SPIs of the pure oil tube set were acquired using the multichannel head coil. Since

PRESS acquisition parameters could not be matched to those intended for clinical

SE-SPI acquisition, the SE-SPIs were acquired using TR/TE = 250/29 ms, BW = 4

kHz, FOV = 20 × 20 × 1 cm, a 64 × 64 matrix, and 512 points acquired at each

readout. For comparison with preclinical results, three SE-SPIs were acquired with

acquisition parameters matched to those intended for clinical implementation.

In all cases, the fat fraction, fat peak amplitudes, and fat composition metrics UI,

UIs, and PUI as measured using SE-SPI were averaged over voxels falling within

the PRESS volume. SE-SPI agreement was assessed for fully sampled scans, as well

as retrospectively accelerated and BCS reconstructed data. The retrospective under-

sampling factors used were R = 5.5 and R = 3 for data acquired with the preclinical

and clinical systems, respectively.

All statistical comparisons were made using Welch’s t-test, also referred to as an

unequal variances t-test, with p < 0.05 considered significant. Welch’s t-test was

chosen over the conventional t-test as it has been shown to be more robust to Type I

errors (false positives) for small sample sizes with unequal variances, unequal sample

sizes, and/or certain degrees of skewness from a normal distribution. However, it is

61
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important to note that Welch’s t-test has less statistical power than the conventional

t-test in these cases, corresponding to an increased likelihood of Type II errors (false

negatives) [77].

4.2 Results

Fat fraction results for the preclinical soybean oil emulsions are shown in Figure 4.1.

CS SE-SPI FF measurements of the 5% and 100% soybean tubes appeared to be

slightly affected by uncorrected aliasing, as indicated by the respective increase and

decrease in FF compared to PRESS and fully sampled SE-SPI measurements, but

not to a large degree. The remaining tubes were unaffected.

Figure 4.1: Fat fractions (mean ± 95% CI over five scans) for the 5%, 10%, 15%,
20%, and 100% soybean oil tubes as measured using PRESS, fully sampled SE-SPI,
and retrospectively accelerated (R = 5.5) CS SE-SPI on the preclinical system.

Shown in Figure 4.2 are the relative fat peak amplitudes calculated from 5 scans of

this soybean oil phantom, along with raw spectra acquired from the 100% soybean oil
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tube. Given that raw spectra were unphased prior to the HSVD-based fitting, these

spectra were chosen to provide a good visualization of the fat peaks of interest, and

are not necessarily representative. The effect of residual aliasing in retrospectively

accelerated CS SE-SPI results was clear from the presence of a water peak in the

spectrum in Figure 4.2A. A smaller water peak was also present in the fully sampled

SE-SPI spectrum, likely a result of intervoxel contamination, as there should be no

aliasing in this case. In general, CS SE-SPI measures of these peak amplitudes agreed

with PRESS.

Shown in Figure 4.3 are the corresponding indices, UI, UIs, and PUI, as calculated

using Equations 2.13, 2.14, and 2.15, respectively, averaged over five scans of the

soybean oil phantom (SE-SPI ROIs were limited to the region covered by the PRESS

voxel). Also shown are lipid composition maps derived from one of the SE-SPIs. With

smaller fat fractions there was a clear increase in variation in these fat composition

metrics, as expected based on the increase in variation in fat peak amplitudes.

Given in Figure 4.4 are the same indices for 5 scans of the pure oil phantom with

the preclinical system, processed assuming N = 25 components. As was the case for

soybean oil, PRESS measurements of lipid composition were, in general, in agreement

with CS SE-SPI results, with the notable exception of UI for the flax oil tube. This

underestimation was a result of the underestimation of Peak 1 and overestimation of

Peak 5 as seen from Figure 4.5B. Nonetheless, trends in fat composition appeared

consistent across the techniques. Furthermore, differences in lipid composition were

observed in a single scan, as shown by the fat maps also given in Figure 4.4. These

fat composition measures were fairly homogeneous within a single tube, aside from

voxels for which the necessary fat peaks for computation of these indices (e.g. Peak

2 for PUI) were not identified during spectral decomposition.
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Figure 4.2: (A) 100% soybean spectra acquired using preclinical PRESS, SE-SPI
(showing results for a single voxel), and retrospectively accelerated (R = 5.5) CS SE-
SPI, offset for clarity. (B-F) Relative peak amplitudes of the six fat peaks (mean ±
95% CI over five scans, plotted at their corresponding frequencies, offset for clarity)
for the soybean oil tubes of varying fat fraction as measured using preclinical PRESS,
fully sampled SE-SPI, and retrospectively accelerated (R = 5.5) CS SE-SPI.
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Figure 4.3: (A, C, E) Unsaturation (UI), surrogate unsaturation (UIs), and polyun-
saturation (PUI) indices (mean ± 95% CI over five scans) for the 100%, 20%, 15%,
10%, and 5% soybean oil tubes as measured using preclinical PRESS, fully sampled
SE-SPI, and retrospectively accelerated (R = 5.5) CS SE-SPI. (B, D, F) Maps of UI,
UIs, and PUI, respectively, for one retrospectively accelerated preclinical CS SE-SPI
of the soybean oil phantom. Clockwise, starting from the top right, are the 100%,
20%, 15%, 10%, and 5% soybean oil tubes.
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Figure 4.4: (A, C, E) Unsaturation (UI), surrogate unsaturation (UIs), and polyunsat-
uration (PUI) indices (mean ± 95% CI over five scans) for the flax, soybean, sesame,
safflower, and peanut oil tubes as measured using preclinical PRESS, fully sampled
SE-SPI, and retrospectively accelerated (R = 5.5) CS SE-SPI. (B, D, F) Maps of UI,
UIs, and PUI, respectively, for one retrospectively accelerated preclinical CS SE-SPI
of the pure oil phantom. Clockwise, starting from the top left, are the flax, peanut,
sesame, soy, and safflower oil tubes.
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Figure 4.5: (A) 100% soybean spectra acquired using preclinical PRESS, SE-SPI
(showing results for a single voxel), and retrospectively accelerated (R = 5.5) CS
SE-SPI, offset for clarity. (B-F) Relative peak amplitudes of the six fat peaks (mean
± 95% CI over 5 scans, plotted at their corresponding frequencies, offset for clarity)
for the pure oil tubes as measured using preclinical PRESS, fully sampled SE-SPI,
and retrospectively accelerated (R = 5.5) CS SE-SPI.
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Given in Tables 4.1, 4.2, and 4.3 are the results of Welch’s t-test comparing the

unsaturation indices of the five oils using PRESS, fully sampled SE-SPI, and CS-

SESPI, respectively. Using PRESS, significant differences (defined as p < 0.05/4

using the Bonferroni correction for multiple comparisons) were observed between all

of the oils except when comparing peanut to safflower, and soy to sesame. This was

also the case for UI calculated using SE-SPI, both fully sampled and accelerated,

except that in these cases the differences in UI between the soy and sesame were

significant.

Table 4.1: Preclinical results of Welch’s t-test comparing the unsaturation indices
(UI) of the various pure oil tubes, as measured using PRESS.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.003 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p = 0.022 p = 0.004 p = 0.002
Sesame NA NA NA p = 0.002 p < 0.001
Safflower NA NA NA NA p = 0.072
Peanut NA NA NA NA NA

Table 4.2: Preclinical results of Welch’s t-test comparing the unsaturation indices
(UI) of the various pure oil tubes, as measured using fully sampled SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p < 0.001 p < 0.001 p < 0.001
Sesame NA NA NA p < 0.001 p < 0.001
Safflower NA NA NA NA p = 0.172
Peanut NA NA NA NA NA

Given in Tables 4.4, 4.5, and 4.6 are the results of Welch’s t-test comparing the

surrogate unsaturation indices of the five oils using PRESS, fully sampled SE-SPI,

and CS-SESPI, respectively. Using PRESS, the UIs of flax oil was significantly higher

than that of all other oil types tested. The same was true for SE-SPI, and for CS

SE-SPI with the exception of soybean oil (difference not significant). In some cases

SE-SPI and CS SE-SPI measured significant differences between oils where PRESS

did not.
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Table 4.3: Preclinical results of Welch’s t-test comparing the unsaturation indices (UI)
of the various pure oil tubes, as measured using retrospectively accelerated (R = 5.5)
CS SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p = 0.010 p < 0.001 p < 0.001
Sesame NA NA NA p = 0.006 p = 0.001
Safflower NA NA NA NA p = 0.346
Peanut NA NA NA NA NA

Table 4.4: Preclinical results of Welch’s t-test comparing the surrogate unsaturation
indices (UIs) of the various pure oil tubes, as measured using PRESS.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.008 p = 0.010 p < 0.001 p = 0.002
Soy NA NA p = 0.992 p = 0.025 p = 0.092
Sesame NA NA NA p = 0.030 p = 0.100
Safflower NA NA NA NA p = 0.741
Peanut NA NA NA NA NA

Table 4.5: Preclinical results of Welch’s t-test comparing the surrogate unsaturation
indices (UIs) of the various pure oil tubes, as measured using fully sampled SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p = 0.207 p = 0.004 p = 0.017
Sesame NA NA NA p = 0.005 p = 0.066
Safflower NA NA NA NA p = 0.449
Peanut NA NA NA NA NA

Given in Tables 4.7, 4.8, and 4.9 are the results of Welch’s t-test comparing the

polyunsaturation indices of the five oils using PRESS, fully sampled SE-SPI, and CS-

SESPI, respectively. As was the case with UI, significant differences were observed

between all of the oils using PRESS except when comparing peanut to safflower and

soy to sesame. This was also the case for CS SE-SPI. Fully sampled SE-SPI observed

a significant difference between all oil types.
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Table 4.6: Preclinical results of Welch’s t-test comparing the surrogate unsatura-
tion indices (UIs) of the various pure oil tubes, as measured using retrospectively
accelerated (R = 5.5) CS SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.016 p = 0.008 p = 0.004 p = 0.002
Soy NA NA p = 0.030 p = 0.002 p < 0.001
Sesame NA NA NA p = 0.024 p = 0.001
Safflower NA NA NA NA p = 0.045
Peanut NA NA NA NA NA

Table 4.7: Preclinical results of Welch’s t-test comparing the polyunsaturation indices
(PUI) of the various pure oil tubes, as measured using PRESS.

Flax Soy Sesame Safflower Peanut
Flax NA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p = 0.035 p = 0.001 p = 0.003
Sesame NA NA NA p < 0.001 p < 0.001
Safflower NA NA NA NA p = 0.242
Peanut NA NA NA NA NA

Table 4.8: Preclinical results of Welch’s t-test comparing the polyunsaturation indices
(PUI) of the various pure oil tubes, as measured using fully sampled SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p < 0.001 p < 0.001 p < 0.001
Sesame NA NA NA p < 0.001 p < 0.001
Safflower NA NA NA NA p = 0.007
Peanut NA NA NA NA NA
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Table 4.9: Preclinical results of Welch’s t-test comparing the polyunsaturation indices
(PUI) of the various pure oil tubes, as measured using retrospectively undersampled
(R = 5.5) CS SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p = 0.018 p < 0.001 p < 0.001
Sesame NA NA NA p = 0.012 p = 0.007
Safflower NA NA NA NA p = 0.444
Peanut NA NA NA NA NA

Shown in Figure 4.6 are the relative fat peak amplitudes for the five pure oil tubes

calculated from four scans of oil phantoms with the clinical system, along with raw

spectra acquired from the 100% soybean oil tube. There was no evidence of aliasing

of the water peak in this case; although, it should be noted that the tubes containing

soybean oil emulsions were much smaller than those containing the pure oil samples.

In many cases, there was an offset between peak amplitude measurements made using

SE-SPI and those made using PRESS. For example, the relative amplitude of Peak 5

seems to be consistently under-estimated with SE-SPI compared to PRESS, with this

difference made up by some of the smaller fat peaks (e.g. Peak 4). Retrospectively

undersampled CS SE-SPI results were, in most cases, in agreement with their fully

sampled counterparts.

Shown in Figure 4.7 are the corresponding indices, UI, UIs, and PUI, as calculated

from Equations 2.13, 2.14, and 2.15, respectively, along with lipid composition maps

derived from one of the CS SE-SPIs. Unlike the preclinical results shown in Figure

4.4, clinical SE-SPI measurements were more variable than those made using PRESS,

and fat maps for the individual scan shown are less homogeneous than those acquired

with the preclinical system. In many cases there was an offset between fatty acid

composition measurements made using PRESS compared to those made using SE-

SPI, especially in the case of the surrogate unsaturation index, UIs, as expected based

on the relative fat peak amplitudes in Figure 4.6.
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Figure 4.6: (A) 100% soybean spectra acquired using clinical PRESS, SE-SPI (show-
ing results for a single voxel), and retrospectively accelerated (R = 3) CS SE-SPI,
offset for clarity. (B-F) Relative peak amplitudes of the six fat peaks (mean ± 95%
CI over four scans, plotted at their corresponding frequencies, offset for clarity) for
the pure oil tubes as measured using clinical PRESS, fully sampled SE-SPI, and
retrospectively accelerated (R = 3) CS SE-SPI.
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Figure 4.7: (A, C, E) Unsaturation (UI), surrogate unsaturation (UIs), and polyun-
saturation (PUI) indices (mean ± 95% CI over four scans) for the flax, soybean,
sesame, safflower, and peanut oil tubes as measured using clinical PRESS, fully sam-
pled SE-SPI, and retrospectively accelerated (R = 3) CS SE-SPI. (B, D, F) Maps of
UI, UIs, and PUI, respectively, for one retrospectively accelerated clinical CS SE-SPI
of the oil phantom. From left to right, top to bottom, are the 5%, 10%, 15%, and 20%
soybean oil emulsions (maps not shown), along with pure soybean, safflower, peanut,
sesame, and flax oil tubes.



74

Despite these offsets, the general trend in these fatty acid composition metrics

seemed to be consistent between techniques. Given in Tables 4.10, 4.11, and 4.12 are

the results of Welch’s t-test comparing the unsaturation indices of the five oils using

PRESS, fully sampled SE-SPI, and CS-SESPI, respectively. Using PRESS, flax oil

was observed to have significantly higher unsaturation index compared to all other

oils except soy. No significant differences were observed with fully sampled SE-SPI.

CS SE-SPI could only distinguish flax oil from sesame and safflower.

Table 4.10: Clinical results of Welch’s t-test comparing the unsaturation indices (UI)
of the various pure oil tubes, as measured using PRESS.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.031 p = 0.004 p = 0.008 p = 0.008
Soy NA NA p = 0.024 p = 0.021 p = 0.024
Sesame NA NA NA p = 0.485 p = 0.478
Safflower NA NA NA NA p = 0.968
Peanut NA NA NA NA NA

Table 4.11: Clinical results of Welch’s t-test comparing the unsaturation indices (UI)
of the various pure oil tubes, as measured using fully sampled SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.337 p = 0.089 p = 0.059 p = 0.101
Soy NA NA p = 0.251 p = 0.115 p = 0.300
Sesame NA NA NA p = 0.636 p = 0.971
Safflower NA NA NA NA p = 0.736
Peanut NA NA NA NA NA

Given in Tables 4.13, 4.14, and 4.15 are the results of Welch’s t-test comparing the

surrogate unsaturation indices of the five oils using PRESS, fully sampled SE-SPI,

and CS-SESPI, respectively. SE-SPI, both fully sampled and accelerated, showed a

significant difference between flax and safflower oils. Additionally, CS SE-SPI was

able to distinguish between flax and sesame oils. A similar trend was observed with

PRESS, but the large variation in the UIs of flax oil meant many of these comparisons

were not significant. On the other hand, PRESS was able to distinguish soybean oil

from sesame whereas SE-SPI and CS SE-SPI could not.
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Table 4.12: Clinical results of Welch’s t-test comparing the unsaturation indices (UI)
of the various pure oil tubes, as measured using retrospectively accelerated (R = 3)
CS SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.048 p = 0.005 p = 0.003 p = 0.015
Soy NA NA p = 0.166 p = 0.107 p = 0.235
Sesame NA NA NA p = 0.949 p = 0.985
Safflower NA NA NA NA p = 0.943
Peanut NA NA NA NA NA

Table 4.13: Clinical results of Welch’s t-test comparing the surrogate unsaturation
indices (UIs) of the various pure oil tubes, as measured using PRESS.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.090 p = 0.050 p = 0.040 p = 0.057
Soy NA NA p = 0.030 p < 0.001 p = 0.085
Sesame NA NA NA p = 0.159 p = 0.541
Safflower NA NA NA NA p = 0.062
Peanut NA NA NA NA NA

Table 4.14: Clinical results of Welch’s t-test comparing the surrogate unsaturation
indices (UIs) of the various pure oil tubes, as measured using fully sampled SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.088 p = 0.035 p = 0.008 p = 0.014
Soy NA NA p = 0.192 p = 0.060 p = 0.101
Sesame NA NA NA p = 0.993 p = 0.988
Safflower NA NA NA NA p = 0.975
Peanut NA NA NA NA NA

Given in Tables 4.16, 4.17, and 4.18 are the results of Welch’s t-test comparing

the polyunsaturation indices of the five oils using PRESS, fully sampled SE-SPI, and

CS-SESPI, respectively. All three techniques showed flax oil as having a significantly

larger PUI as compared to all other oil types. In fact PRESS was able to distinguish

between all oil types except in the case of comparing sesame to peanut oil. SE-SPI
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measurements, both fully sampled and accelerated, showed similar trends, but in

many cases these trends were not significant.

Table 4.15: Clinical results of Welch’s t-test comparing the surrogate unsaturation in-
dices (UIs) of the various pure oil tubes, as measured using retrospectively accelerated
(R = 3) CS SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.079 p = 0.009 p = 0.012 p = 0.024
Soy NA NA p = 0.360 p = 0.325 p = 0.225
Sesame NA NA NA p = 0.875 p = 0.537
Safflower NA NA NA NA p = 0.629
Peanut NA NA NA NA NA

Table 4.16: Clinical results of Welch’s t-test comparing the polyunsaturation indices
(PUI) of the various pure oil tubes, as measured using PRESS.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.004 p = 0.002 p < 0.001 p = 0.002
Soy NA NA p = 0.004 p < 0.001 p = 0.002
Sesame NA NA NA p < 0.001 p = 0.474
Safflower NA NA NA NA p < 0.001
Peanut NA NA NA NA NA

Table 4.17: Clinical results of Welch’s t-test comparing the polyunsaturation indices
(PUI) of the various pure oil tubes, as measured using fully sampled SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p = 0.002 p = 0.004 p = 0.003 p = 0.002
Soy NA NA p = 0.013 p = 0.003 p = 0.016
Sesame NA NA NA p = 0.010 p = 0.723
Safflower NA NA NA NA p = 0.057
Peanut NA NA NA NA NA
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Table 4.18: Clinical results of Welch’s t-test comparing the polyunsaturation indices
(PUI) of the various pure oil tubes, as measured using retrospectively undersampled
(R = 3) CS SE-SPI.

Flax Soy Sesame Safflower Peanut
Flax NA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Soy NA NA p = 0.015 p = 0.002 p = 0.067
Sesame NA NA NA p = 0.015 p = 0.854
Safflower NA NA NA NA p = 0.188
Peanut NA NA NA NA NA

4.3 Discussion

Having chosen appropriate parameters for the BCS reconstruction and HSVD-based

spectral decomposition, SE-SPI based quantification, including both fat fraction and

fatty acid composition, could be assessed. While measures of lipid composition are the

focus of this work, the measured fat fractions of the preclinical soybean oil tube setup

are an important measure of aliasing in the CS SE-SPI results. On average, the fat

fraction of the phantom set was 30% soybean oil. Thus, uncorrected aliasing of signal

in the CS SE-SPI would, on average, result in an increase in fat signal in the soybean

oil emulsions, and a decrease in fat signal in the 100% soybean oil tube. This is

important to keep in mind when assessing CS SE-SPI fat composition measurements

for these lower fat fraction tubes, which could appear to perform better in the presence

of aliasing given the amplification of the fat signal. On a side note, it should be

reiterated that, while the fat fractions in Figure 4.1 do seem to align somewhat

with the percentage amounts of soybean oil, this is coincidental. As discussed in

Section 3.3, the fat fractions presented here are not proton density measures, and

will be affected by acquisition parameters, the degree to which they are affected

depending on the relaxation properties of the sample. As such, fat fractions should

not be compared to their expected PDFF, but rather to our ‘gold standard’ PRESS

measurements. While some degree of residual aliasing was observed in CS SE-SPI

compared to PRESS results, shown in Figure 4.1, it was not considered to be of

concern in assessing fatty acid composition results.
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The relative fat peak amplitudes of the preclinical soybean oil emulsions measured

with SE-SPI showed good agreement with PRESS results. Importantly, smaller peaks

did not seem to be underestimated or lost in the CS process, which has the potential

to remove low contrast features as a result of the sparsity constraint. This agree-

ment held for smaller fat fractions, although variation increased as a result of the

reduced SNR. In most cases, PRESS measurements were more variable than their

fully sampled SE-SPI counterparts, likely a result of the larger relative voxel size

allowing more shim-induced line broadening. Furthermore, CS SE-SPI results were

often less variable than those from fully sampled scans, likely a result of enforcing

sparsity in the data, as noise that would be present even in the fully sampled scans is

likely not sparse [55]. The reduction in variation in a single scan can be seen in the

CS reconstructed fat maps in Figures 3.11-3.14. Unsurprisingly, many of the same

trends were observed in the lipid composition metrics derived from these relative peak

amplitudes.

While important that these measures of lipid composition are consistent for vary-

ing fat fractions, it is also important that differences in lipid composition can be

observed. Given that only one oil type (soybean) was present in the scans used to

generate the results in Figures 4.2 and 4.3, it is possible that the BCS algorithm, which

learns the basis functions from the data itself, assigned a higher weight to spectral

basis functions fitting of soybean oil composition. Similarly, it might be expected, in

a scan containing oils of varying composition, that basis functions describing spectra

of more predominant features could be favoured while those present to a lesser degree

are suppressed, complicating the differentiation of different oils.

The fatty acid composition of the pure oil tubes, as measured using CS SE-SPI,

showed similar trends to that observed with PRESS, using both the preclinical and

clinical systems. For the preclinical results, all significant differences in UI between

oils as quantified using PRESS were also observed with SE-SPI, both fully sampled

and accelerated. In the case of UIs, while the general trend in lipid composition seems

similar for all three techniques, as shown in Figure 4.4, the large variation in PRESS

measurements, and that of flax oil for CS SE-SPI, meant many of these trends were

not significant. In the case of PUI, all trends were identical, except that fatty acid

composition as measured using fully sampled SE-SPI showed a significant differences
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when comparing sesame to soybean oil and safflower to peanut oil and whereas CS SE-

SPI and PRESS did not. Looking at Figure 4.5F, the difference between safflower and

peanut oil observed with SE-SPI seems to have been a result of underestimating the

relative amplitude of the methylene peak (Peak 5). In fact, this was a common trend

in fully sampled SE-SPI measurements across all of the pure oil samples. As this did

not occur in the CS SE-SPI measurements, this offset does not seem to be introduced

by the nature of the sequence. One possible explanation for this trend could be bias

in the spectral decomposition step, caused, for example, by increased noise in the

fully sampled SE-SPI spectra that is removed in the CS process; however, further

investigation is required. Whatever the underlying cause, it may also be causing

the overestimation of fat fraction with fully sampled SE-SPI in Figure 4.1, especially

apparent in the 20% soybean oil emulsion tube. Nonetheless, the CS results are most

relevant for this work. All trends in lipid composition observed with PRESS were also

observed with SE-SPI, even after retrospective acceleration, and while there existed

cases in which CS SE-SPI observed significant differences that PRESS did not, this

may have been a result of the large variation in PRESS measurements.

It is worth noting that, as discussed in the Methods section, a retrospective un-

dersampling factor of R = 5.5 was chosen for this preclinical analysis in order to

match that observed in the mouse study. However, it should be reiterated that the

phantom scans used to obtain these results are 2D. Higher dimensional datasets are

more compressible, meaning their sparse representations will provide a more accurate

model of the true signal [43]. As such, it may be the case that these results would

improve for 3D applications of the same undersampling factor.

For the clinical results, trends in fatty acid composition were also similar across

techniques. However, in this case large variations in SE-SPI measures of fatty acid

composition metrics, both for the fully sampled and retrospectively accelerated scans

as Shown in Figure 4.7, meant many of these trends were not significant. As was

the case for preclinical PRESS measurements, this large variation may be a result

of difficulties shimming the phantom. For clinical PRESS acquisitions, higher or-

der shimming was performed in order to improve B0 homogeneity across the voxel.

However, applying similar higher order shimming procedures to the larger imaging

volumes used with a spectroscopic imaging techniques such as SE-SPI will likely not
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achieve the same degree of homogeneity [34, 78]. Even so, where trends observed with

SE-SPI were significant, they were often in agreement with PRESS results.

There also appeared to be some slight bias between clinical PRESS and SE-SPI

lipid composition measurements, with SE-SPI consistently overestimating each metric

in comparison to PRESS, especially apparent for UIs in Figure 4.7. Interestingly,

comparing clinical SE-SPI measurements to those made on the preclinical system,

as shown in Supplementary Figure 4.8, shows little evidence of bias, implying that

shown in Figure 4.7 may have been introduced by the clinical PRESS sequence.

Nonetheless, for this work, as stated in Hypothesis A, fatty acid composition

measures are said to agree for two techniques if they show the same trends across

oils, as determined using Welch’s t-test. By this definition preclinical PRESS and CS

SE-SPI measurements can be said to agree. However, the clinical implementation of

CS SE-SPI did not have the same sensitivity as PRESS, seemingly a result of the large

variation in fatty acid composition metrics. This definition of agreement was chosen

as opposed to more thorough equivalence testing, the two-one-sided t-tests (TOST)

procedure, for example, as these types of equivalence tests often require choosing

some threshold of agreement. Since it is not yet known what degree of change in lipid

composition will be observed in a clinical setting, choosing such a threshold at this

point seemed somewhat arbitrary.
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Figure 4.8: Unsaturation (UI), surrogate unsaturation (UIs), and polyunsaturation
(PUI) indices (mean ± 95% CI over 3 scans, clinical SE-SPI scan parameters matched
to those used preclinically) for the flax, soybean, sesame, safflower, and peanut oil
tubes as measured using fully sampled SE-SPI on the clinical system, alongside pre-
clinical PRESS and SE-SPI measurements.



Chapter 5

In vivo Mouse Evaluation

5.1 Methods

5.1.1 Experimental Design

The protocol for this in vivo mouse study was approved by the local Animal Care

Committee. Sixteen BALB/c mice (Charles River, Wilmington, US) were divided

into four groups, one of which received a normal diet and no iron injections, one

which received an MCD diet to induce fatty liver and no iron injections, one which

received a normal diet and iron injections, and the last of which received both the

MCD diet and iron injections. The MCD diet formulation used was Teklad TD.90262

(Envigo, Huntingdon, UK), which results in a sequestering of fat in the liver, as well

as liver inflammation, in a relatively short period of time. Intravenous injection of

superparamagnetic iron oxide (SPIO) particles (Feraspin XXL from Miltenyi Biotec,

Bergisch Gladbach, Germany) was used to simulate iron overload; mice received an

approximate dose of 40 µmol/kg, injected into their tail vein the day before each

scanning session. Mice receiving a normal diet were scanned on two days, one week

apart. Mice receiving the MCD diet were scanned three times, on Days 0, 4, and 11,

defining Day 1 as the first day of the diet. One mouse from each group was sacrificed

on the second last day of planned scanning (following the first session for normal

diet groups, or the Day 4 session for the MCD diet groups). Remaining mice were

sacrificed following the final session.

Each scanning session consisted of a balanced steady-state free precession (bSSFP)

anatomical image (256 × 128 × 128 matrix with 1.5 × 2 × 2 mm voxels, α = 30◦,

TR/TE = 8/4 ms), 3D undersampled SE-SPI (R = 4, scan time of 55 minutes,

acquisition parameters matched to those used for preclinical phantom experiments),

and an in vivo PRESS voxel (TR/TE = 10000/13 ms, receiver BW = 3 kHz, 5×5×5

mm voxel, 4096 points acquired at each readout, 25 averages). Mice were anesthetised

82
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for the entire protocol, and temperature maintained at 37◦C. Following the final

session, mice were terminated and their livers excised, maintained in a fluorinated

hydrocarbon solution. An ex vivo PRESS voxel was acquired, positioned such that the

signal obtained was that from the entire liver volume (15×15×15 mm to 15×15×25

mm voxel, otherwise identical to that acquired in vivo).

5.1.2 Lipid Composition Analysis

Following motion correction, CS SE-SPIs were reconstructed using BCS, with niter =

30 iterations, r = 35 basis functions, regularization parameter λ = 0.01, and scaled by

a factor of s = 2 as determined with the phantom experiments described in Chapter

3. Spectra obtained from CS SE-SPI and PRESS were processed as described in

Section 3.3 assuming N = 25 HSVD components for the main HSVD and using the

bins given in Table 5.1. The water bin used for in vivo experiments was considerably

larger than that used for phantoms in order to accommodate peak splitting in PRESS

measurements.

Table 5.1: Bins, based on those described in Johnson et al. [23], used in separating
the fatty acid functional groups for preclinical mouse experiments. Bins were deter-
mined in reference to the water resonance, taken as 4.7 ppm in vivo, as expected for
temperatures near 39◦C [67].

Peak Frequency Bins (ppm)
Methene (Peak 1) 5.05− 5.55

Water 3.05− 6.35
Diallylic (Peak 2) 2.55− 3.05

α-Methylene to carboxyl (Peak 3) 2.05− 2.55
Allylic (Peak 4) 1.55− 2.05

Methylene (Peak 5) 1.05− 1.55
Methyl (Peak 6) 0.55− 1.05

In order to correct for differences in T1 saturation effects, given the difference in

TR between SE-SPI and PRESS measurements, the following theoretical correction

was applied to fat fractions as measured using SE-SPI:

FF =
(1− exp[−TR/T1,fat])FFTR

(1− exp[−TR/T1,fat])(1− FFTR) + (1− exp[−TR/T1,water])FFTR

(5.1)
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where FF is the TR corrected fat fraction, FFTR the uncorrected fat fraction, T1,fat

and T1,water the longitudinal relaxation times of fat and water, respectively. This

correction was based on the expected steady state signal, as derived in Section A.1.

T1 values chosen were 300 ms and 1 s for fat and water, respectively, in order to best

fit paired PRESS data acquired in mice with long (10 s) and short (200 ms) TR.

Mouse liver contours were drawn using the bSSFP anatomical in VivoQuant (In-

vicro, Boston, US). In many cases, the SE-SPI imaging volume did not overlap well

with the PRESS voxel, as shown in Figure 5.1, as PRESS voxel placement prioritized

overlap with the liver as opposed to overlap with the SE-SPI volume. Additionally,

the SNR of CS SE-SPI data in slices near the edge of the imaging volume was poor,

further complicating comparison in these cases of limited overlap. Thus, the ROI

used for CS SE-SPI analysis was limited to the portion of liver volume imaged with

adequate signal (greater than the mean CS SE-SPI signal intensity, see Figure 5.1).

Figure 5.1: Sagittal slice of the bSSFP anatomical. The larger white outline indicates
the SE-SPI volume, and the smaller outline the PRESS voxel. The liver contour is
shown in red. Shown in green is the ROI used for SE-SPI analysis; i.e. liver tissue
having adequate SE-SPI signal intensity.

One in vivo PRESS spectra was omitted from analysis due to lack of overlap with

the contoured liver volume (a mouse on Day 0 of the MCD diet, no iron injection).

For the same mouse, in the same session, the CS SE-SPI dataset was omitted due to

a lack of liver tissue with adequate signal intensity. Furthermore, spectra for which

necessary fat peaks (e.g. Peak 2 for PUI) were not identified were also omitted from

the analysis, as this was often a result of errors in the spectral decomposition as

opposed to true absence of a fat peak. In the case of PRESS, this datapoint was
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omitted entirely. For CS SE-SPI, UI, UIs, and PUI were averaged1 over spectra in

the liver volume for which the necessary fat peaks were identified.

As opposed to intramouse comparisons, complicated both by lack of overlap and

the difference in TR, among other things, PRESS and CS SE-SPI results were an-

alyzed at the group level. As was the case for preclinical experiments, statistical

comparisons were made using Welch’s t-test.

5.2 Results

Figure 5.2: Fat fraction as calculated using in vivo PRESS spectra (A), ex vivo
PRESS spectra (B), and CS SE-SPI (C). Bar plots and error bars indicate the mean
and 95% CI over the control diet groups, in blue, and the MCD diet groups, in red,
on Days 0, 4, and 11 (Day 1 being the start of the diet). Scatter plots show results
for individual mice, darkened points are those mice which received iron injection.

Given in Figure 5.2 are the fat fraction results (TR corrected in the case of CS

SE-SPI) of the mouse study. The results for the control diet group are displayed

alongside those for the MCD diet group on Days 4 and 11 to allow visualization of

expected trends (MCD diet was started on Day 1, so no difference is expected on Day

0). Statistically significant differences (p < 0.05 using Welch’s t-test, corrected with

the Bonferroni correction) are indicated between the MCD diet and control groups for

each day, and between days for each group. Statistical testing was not performed for

1Averaging of fat composition indices was not weighted by FF .
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groups containing fewer than 3 datapoints (e.g. ex vivo PRESS data from Day 4). All

between group comparisons were consistent with both in vivo and ex vivo PRESS and

CS SE-SPI. While the CS SE-SPI fat fraction measurements did not vary temporally

to the same degree as those measured with in vivo PRESS, the latter measurements

varied more within groups, potentially caused by some systematic bias whereby the

fat fraction measured for MCD mice having received iron injection was consistently

higher than that for MCD mice without this iron overload.

Given in Figures 5.3 and 5.4 are the UI, UIs, and PUI as measured using in vivo

PRESS and ex vivo PRESS, respectively. No trends in fat composition were ob-

served using either technique. In fact, PRESS results in general were very scattered.

Shown in Figure 5.5 are some examples of spectra acquired using in vivo PRESS, ex

vivo PRESS, and CS SE-SPI. The quality of in vivo PRESS spectra was generally

poor, with increased linewidths and peak splitting compared to ex vivo PRESS spec-

tra. While peak splitting was not observed in the large majority of ex vivo PRESS

measurements, in many cases linewidths were larger than those observed with CS

SE-SPI.

Figure 5.3: Unsaturation (UI), surrogate unsaturation (UIs), and polyunsaturation
(PUI) indices as calculated from in vivo PRESS spectra. Bar plots and error bars
indicate the mean and 95% CI over the control diet groups, in blue, and the MCD
diet groups, in red, on Days 0, 4, and 11 (Day 1 being the start of the diet). Scatter
plots show results for individual mice, darkened points are those mice which received
iron injection.
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Figure 5.4: Unsaturation (UI), surrogate unsaturation (UIs), and polyunsaturation
(PUI) indices as calculated from ex vivo PRESS spectra. Bar plots and error bars
indicate the mean and 95% CI over the control diet groups, in blue, and the MCD
diet groups, in red, on Days 0, 4, and 11 (Day 1 being the start of the diet). Scatter
plots show results for individual mice, darkened points are those mice which received
iron injection.
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Figure 5.5: Raw spectra (unphased, absolute values shown), shown for in vivo PRESS,
ex vivo PRESS, and a single CS SE-SPI voxel, offset for clarity, alongside anatomical
images with liver contour shown in red. In vivo PRESS voxels are indicated by the
large square outline, and the CS SE-SPI voxel displayed indicated by the small square
outline; ex vivo PRESS spectra were acquired covering the entire liver. (Top) A mouse
in the normal diet group, without iron injection. (Middle) A mouse after 11 days on
the MCD diet, without iron injection. (Bottom) A mouse after 11 days on the MCD
diet, with iron injection.
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Given in Figure 5.6 are the UI, UIs, and PUI as measured using CS SE-SPI.

Statistically significant differences, between groups on each day and between days for

each group, are indicated. No trends were observed in UI or PUI, but there was a

significant decrease in the surrogate unsaturation index, UIs.

Figure 5.6: Unsaturation (UI), surrogate unsaturation (UIs), and polyunsaturation
(PUI) indices as calculated from CS SE-SPI. Bar plots and error bars indicate the
mean and 95% CI over the control diet groups, in blue, and the MCD diet groups, in
red, on Days 0, 4, and 11 (Day 1 being the start of the diet). Scatter plots show results
for individual mice, darkened points are those mice which received iron injection.

Importantly, for individual scans no correlation was observed between fat fraction

and fat composition metrics. For UI, only 1/35 scans showed moderate correlation

(Spearman’s correlation coefficient of −0.5) with fat fraction, remaining scans showed

weak to no correlation (correlation coefficients between −0.3 and 0.3). For UIs, all

scans showed weak to no correlation with fat fraction. This provides confidence that

the observed changes in UIs are not a result of fat fraction related bias in the spectral

decomposition, and that UIs as a biomarker provides new information in addition to

fat fraction. For PUI, only 8/35 scans showed moderate (correlation coefficients of

0.4 (one scan) and −0.4 (seven scans)) with fat fraction. Shown in Figure 5.7 are

maps of fat fraction and UIs in one of the MCD mice with iron injection; there is a

clear increase in fat fraction and decrease in UIs from Day 1 to Day 11. Furthermore,

there is no apparent pixelwise correlation between fat fraction and UIs in the maps

presented.
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Figure 5.7: (A,B,C) Fat fraction maps (TR corrected) for an MCD mouse, with iron
injection, on Days 0, 4, and 11 (Day 1 being the start of the diet), respectively.
Average fat fractions over the liver volumes imaged are indicated. (D,E,F) Maps of
surrogate unsaturation index, UIs, for the same mouse. Average values of UIs over
the liver volumes imaged, omitting voxels for which necessary fat peaks could not be
identified, are indicated.

5.3 Discussion

The quality of in vivo PRESS spectra was generally poor, with increased linewidths

and peak splitting compared to ex vivo PRESS spectra, likely a result of the lack

of respiratory compensation. While peak splitting was not observed in the large

majority of ex vivo PRESS measurements, in many cases linewidths were larger than

those observed with CS SE-SPI, likely a result of the larger relative voxel size (see

Figure 5.8). Additionally, the shorter TR used for CS SE-SPI measurements had

a water-suppressing effect which did not occur with PRESS. While not necessarily

indicated by the individual CS SE-SPI spectra in Figure 5.5 and the fat fraction

results in Figure 5.2 (corrected for T1 saturation effects), the true fat peak amplitudes

as measured using CS SE-SPI were larger, relative to the water peak, than their

PRESS counterparts. As seen in Figure 5.5, individual fat peaks were generally more
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difficult to visualize in PRESS spectra as compared to those obtained with CS SE-SPI,

especially for lower fat fractions in the control group. In addition to this reduced SNR,

the spectral decomposition (in particular the number of HSVD components assumed)

was optimized for TR = 200 ms, potentially resulting in an increase in fitting errors

with PRESS as compared to CS SE-SPI.

Figure 5.8: Raw spectra (unphased, absolute values shown) for a single in vivo CS
SE-SPI voxel, as well as those averaged over 3x3x3 and 10x10x10 (approximate size
of the in vivo PRESS voxels) sub-volumes. An ex vivo PRESS spectrum is also shown
for comparison.

These comments should not be taken as a general statement on the quality of

PRESS as compared to CS SE-SPI. Many of the difficulties experienced with PRESS

may be remediated to some degree by changing the scan parameters such as TR,

acquiring spectra with a more advanced, multichannel RF arrays (improving SNR),

compensating for respiratory motion (done by breath hold in a clinical setting, al-

though in this case there may be inconsistencies in the breath hold used for voxel

planning and that used for acquiring the spectrum [79]), and making use of higher

order shimming. However, these factors did prompt the decision to compare the CS

SE-SPI measurements of fat composition with literature as opposed to the PRESS

results obtained in this study.
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CS SE-SPI results showed a significant decrease in UIs, with no significant change

in UI or PUI. While it would be expected to see similar behaviours in UI and UIs,

the lack of trend in UI may be a result of assuming prior knowledge in the spec-

tral analysis. As discussed in Section 3.3, large signal components assigned to the

methene bin were omitted. However, this required defining a maximum amplitude for

the methene peak relative to that of methylene. While this assumption limited UI as

a metric of lipid composition, it was required in order to accomodate for peak split-

ting, especially for in vivo PRESS spectra, emphasizing the utility of the surrogate

unsaturation index proposed by Johnson et al. [23].

The observed decrease in the surrogate unsaturation index, equivalent to an in-

crease in the relative amount of SFAs, is consistent with results in the literature for

mice on this particular MCD diet. A study by Li et al. [29] also investigated the

fat sequestration in the liver in terms of fatty acid components, namely SFAs and

MUFAs. The group observed, using gas chromatography, a significant increase in the

relative amount of SFAs in mice on the MCD diet for 6 weeks, as compared to the

control group, with no significant change in the relative amount of MUFAs.

Given a significant increase in the relative amount of SFAs with no change in

MUFAs [29], it could be implied that this difference is made up by a decrease in the

relative amount of PUFAs. However, no corresponding trend was observed in PUI

in this study. Although, UIs is derived from the relative amplitudes of allylic (Peak

2) and diallylic (Peak 4) peaks, as described by Equation 2.14, while PUI is derived

solely from the relative amplitude of the diallylic peak, as described by Equation 2.15.

While PUFAs are solely responsible for the signal of the diallylic peak, both MUFAs

and PUFAs contribute to the signal of the allylic peak (Peak 4), which is generally

larger than the diallylic peak (Peak 2), as seen from Figures 4.2 and 4.5. As a result,

it may be the case that this additional signal contribution resulted in an observable

decrease in UIs, while a decrease in PUI was too small to be observed. Notably, PUI

was the most difficult index to visualize with CS SE-SPI, with the largest fraction of

voxels omitted from analysis due to difficulty identifying the relevant fat peak (Peak

2).

It should be reiterated that, while the CS SE-SPI fat fraction results are corrected
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for T1 saturation effects, the same is not true of the fat composition measures. Dif-

ferences in T1 and T2 for the fatty acid functional groups [47, 70] will introduce signal

weightings in UI, UIs, and PUI that are dependant on scan parameters such as TR

and TE. Thus, the indices presented here should be taken as relative measures, not

proton density metrics. It is also important to note that, while a decrease in the

relative amount of UFAs was observed here and is in agreement with another study

of mice on this diet, these results should not be generalized. While the MCD diet

was used here to induce fatty livers in mice, and is often used in other applications

to study more progressive liver disease, including NASH and fibrosis [80], it is not a

true model of human NAFLD, and changes in fat composition may differ from hu-

man cases. In fact, changes in fat composition differ for different MCD diets used in

animal models of the disease. MCD diets using fructose alone as the carbohydrate

source result in a larger increase in the amount SFAs relative to MUFAs as compared

to MCD diets using glucose as the carbohydrate source [30].

Nonetheless, these results show that CS SE-SPI can be used to observe changes

in lipid composition in an in vivo model of NAFLD, even in the presence of iron,

as shown in Figure 5.7. Although similar changes were not observed with PRESS,

the consistency of the results shown here with those in the literature for mice on an

identical MCD diet provides additional confidence in the reliability of this CS SE-

SPI technique. While clinical PRESS acquisitions will not be affected by many of

the issues experienced with this preclinical set-up, they will inherently be limited in

spatial coverage compared to CS SE-SPI, and their larger effective voxel sizes will

likely still result in line broadening.
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Conclusions and Future Directions

The work presented in this thesis demonstrates the viability of SE-SPI for lipid com-

position mapping in NAFLD. Being a purely phase encoded sequence, SE-SPI is an

inherently slow imaging technique, limiting its clinical application. However, given

the relaxation properties of liver fat, further complicated by high iron concentrations

that can accompany liver disease, SE-SPI is preferred over faster spectroscopic imag-

ing techniques which may not be as well-suited for application in NAFLD. Instead,

SE-SPI scans were accelerated using compressed sensing, allowing accurate fatty acid

composition measurements from randomly undersampled k-space data in a relatively

short amount of time. The use of random undersampling also suited the retrospec-

tive motion correction used in conjunction with a free-breathing acquisition for in

vivo applications of CS SE-SPI.

Having chosen appropriate parameters for the BCS reconstruction and spectral

decomposition, preclinical phantom results showed CS SE-SPI to be in good agree-

ment with PRESS measurements of fatty acid composition, as proposed in Hypothesis

A. CS SE-SPIs of the same pure oil samples on a clinical system also showed similar

trends to those observed with PRESS; however, many of these trends were not signifi-

cant due to the large intersession variability. Importantly, the in vivo application of a

free-breathing CS SE-SPI sequence in a mouse model of NAFLD showed a significant

decrease in the relative amount of UFAs in mice fed an MCD diet, in agreement with

literature results as proposed in Hypothesis B. Granted, it should also be noted that

the differences in fatty acid composition observed here, both with the oil phantoms

and in vivo model of liver disease, may not mimic those which occur in clinical cases

of NAFLD. A similar analysis of PRESS spectra acquired in this mouse study was

complicated by increased linewidths and peaks splitting, and no changes in fatty acid

composition were observed. These complications will likely not be as limiting in a

clinical setting where breath-holds can account for respiratory motion to some degree

94
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and higher order shimming can improve B0 homogeneity. However, they did limit the

comparison of in vivo fatty acid composition measurements between CS SE-SPI and

PRESS for this study, as did placement issues.

This work constitutes an important precursor to the implementation of CS SE-SPI

in clinical cases of NAFLD. Although, work remains to be done investigating which

BCS reconstruction and spectral decomposition parameters are most appropriate in

acquiring this fatty acid composition information in the presence of a water peak, as

was done preclinically using the soybean oil emulsions. Additionally, it has yet to be

determined whether a 2D or 3D CS SE-SPI sequence would be most appropriate for

this clinical implementation. While a 3D implementation would provide improved

spatial coverage of the liver, it would also require a higher degree of acceleration in

order to achieve clinically feasible scan times, which could adversely affect fatty acid

composition measurements. Furthermore, it should be noted that the 64 × 64 × 16

3D matrix used for preclinical acquisitions in this work (taking 55 minutes when 4X

undersampled) is not feasible in a clinical setting due to time constraints. 64× 64 2D

and 40× 40× 8 3D CS SE-SPI sequences, both accelerated to a 10 minute scan time,

are being assessed for this clinical application. While scan time may be partially

reduced by lowering scan resolution, the effect of this increased voxel size on spectral

quality must also be considered.

Lastly, while CS SE-SPI provides spatially resolved maps of fatty acid composition

information, for the purposes of this work lipid composition indices were averaged over

liver. It may be the case that the spatial distribution of fat composition in the liver

could provide additional information in characterizing disease progression. One ap-

proach to investigating this theory would be to make use of deep learning, specifically

convolutional neural networks (CNNs). CNNs have the potential to automatically

extract important features from the data (whether it be fat composition maps or

the full spectroscopic imaging dataset) using a training set of images with known

NAFLD stage and grade, meaning no prior knowledge of what features are important

is required. Such a neural network could also make use of additional diagnostic tests,

MRE scans, for example, to explore whether a combination of tests could provide a

more robust measure of liver disease progression non-invasively.

Nonetheless, with its improved spatial coverage CS SE-SPI has the potential to
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provide a more complete measure of fatty acid composition than MRS techniques

used previously in studies of fat composition in NAFLD. As such, it would allow a

more thorough investigation as to the potential of this lipid composition information

as a biomarker of NAFLD. In particular, the hope is that this fatty acid composition

information, along with that information provided by other diagnostic techniques,

will allow for a more reliable predictor of liver disease progression than that currently

available through non-invasive diagnostic tests. Such information would be especially

valuable considering NAFLD is more easily treated in its early stages, and given the

degree to which NAFLD affects the population.



Appendix A

Derivations

A.1 Fat Fraction Correction for TR (Equation 5.1)

The signal fat fraction, FF , will be given by:

FF =
SF

SF + SW

(A.1)

where SF and SW are the relative signal weightings for fat and water, respectively.

Define the equivalent water fraction as WF = (1 − FF ). Differences in T1 between

fat and water introduce differences in signal weighting by a factor of [81]:

M⊥ ∝ (1− exp[−TR/T1]) (A.2)

Thus, the signal fat fraction, now expressed as FFTR, can be expressed in terms of

the corrected fat fraction, FF∞, i.e. the fat fraction that would be measured with an

infinite TR,1 as follows:

FFTR =
FF∞(1− exp[−TR/T1,fat])

FF∞(1− exp[−TR/T1,fat]) + (1− FF∞)(1− exp[−TR/T1,water])
(A.3)

where T1,fat and T1,water are the longitudinal relaxation times of fat and water, re-

spectively. Rearranging this equation for the TR corrected fat fraction gives:

FF∞ =
(1− exp[−TR/T1,fat])FFTR

(1− exp[−TR/T1,fat])(1− FFTR) + (1− exp[−TR/T1,water])FFTR

(A.4)

1Or TR� T1, for practical purposes.
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